Category Archives: Thoughts

What would it look like to go back to first principles when it comes to root store management in 2022?

In the early 2000s, Microsoft mandated that all CAs in its root program would need to be audited for conformity to WebTrust For CAs (WebTrust), It was the first root program to do so and I was the root program manager that rolled out that change. 

For those who are interested Web Trust for CAs is an audit that looks back at a period of past behavior to assess conformity to a set of criteria specific to certificate authorities. Only approved auditors are allowed to officially perform these assessments.

The decision to require the WebTrust audit was pretty simple, there was literally no other independent standard that attempted to assess the operational readiness and security of certificate authorities, and as far as such standards went it was more good than it was bad.

The other root programs didn’t have objective criteria, some operated on a pay-to-play model with virtually no requirements, while others simply wanted a management assertion of conformity to a small list of requirements and a contract signed. 

The idea of working with an independent group that had a vested interest in creating a baseline standard for the operation of CAs, that would be able to evolve over time, seemed like a no-brainer given how poor and inconsistent CA practices were at the time.

Nearly two decades later the CA/Browser Forum is where the AICPA and others go to discuss how the audit criteria should evolve over time. It’s objectively a success in that today there is quite a bit of uniformity in the operational practices that CAs have and its existence has led to many improvements to the WebPKI.

With that said, if we go back to first principles today I think I would take a different approach. I would design a root program that was heavily based on technical security controls, and behaviors that can be verified externally continuously.

If we’re going first principles then let’s take a step back at what responsibility a CA has on the internet. A TLS certificate does one thing fundamentally, it binds a domain name to a public key. It does this so that user agents (browsers) can verify that the server on the other end can verify that they are talking to the right server.

This user agent believes this certificate is telling the truth because the browser operators will remove CAs that demonstrate they are not trustworthy. 

Today I would guess 60-70% of the certificates on the web are issued via the ACME (RFC 8555) protocol. this protocol has a handful of methods it allows a requestor to use to prove they control the domain name (for example DNS-01, HTTP-01, and TLS-ALPN-02).

What this means is if ACME is the only way you can get a certificate from a CA, it also means that it is possible to externally test how the CA performs domain control verification. 

There has been another innovation in this space, we now have Certificate Transparency, this is a community of append-only ledgers that in union contain all of the WebPKI certificates. If a certificate does not get logged to the CT ledgers then users with major browsers (Safari, Chrome, Edge, etc) will see an error when the user visits the associated site.

This now gets us a list of all the things, with this list we can programmatically review 100% of the certificate issuance to ensure that they meet the externally visible technical requirements. This already happens today in the WebPKI thanks to the excellent Zlint.

What about how the CAs key material is protected? I love a good HSM too! Well, some HSMs already support attestations about the keys they are protecting, for example, Google Cloud, and Amazon Web Services use Marvel HSMs in their cloud offering and those devices offer hardware attestations about how a given key is protected.

What about the software that makes up the service? Well, some languages make naturally reproducible builds, for example, Go. This means that you could conceptually run CA software on hardware capable of making attestations about what it is running and from that attestation and if that software was open source you could audit the behavior of that software for security and conformity criteria.

You could even go so far as incorporating these attestations into certificate transparency pre-certificates along with how the domain control verification was performed for the “final” certificate so these things could be audited on a per certificate basis.

You could take the additional step of schematizing all of the audit logs that each of these CAs is required to produce and require them to make them public and verifiable via something like an append-only ledger.

We could even go so far as to eliminate the need for revocation checking by adopting very short-lived certificates as a mandate.

Now don’t get me wrong, this isn’t a complete list, and I doubt there is any set of technical controls that would totally eliminate the need for onsite independent visits but I would argue that they could be more frequent or technically deeper if as an industry we could asses much of the conformity of CAs in real-time and track the changes to their infrastructure.

This sounds like a big lift, after all, there is a top of CAs that exist in the WebPKI, the reality is that the large majority of these don’t focus on TLS as demonstrated by the fact that 5 CAs issue 98.59% of all TLS certificates. This means that you wouldn’t need to get many entities to embrace this new model to cover most of the internet.

If you had enough participants this new root program could be very agile for this new root program. After a short period of initial automated testing and a signed letter of conformity from an auditor, you could automate the inclusion processes. Should the continental monitoring find an issue you could automate the reporting to the CA and even automate the distrust of the CA in some cases.

This new WebPKI would need to exist in parallel to the old one for a long time, in particular, the existence of all of the embedded devices without reasonable firmware update would hold back its total adoption as websites need certificates that work everywhere but you can see a path to an agile, continually verified web PKI that leveraged more of these technical controls rather than all of the manual and procedural verification that is involved today.

I want to be clear, the above is a thought exercise, I am not aware of anyone planning on doing anything like the above, but I do think after 20 years it is entirely reasonable to rethink the topic of what the WebPKI looks like and we don’t need to rest on old patterns “just because that’s how it is done” — we have come a long distance in the last couple of decades and it’s worth looking at back these problems now and again.

WebPKI, TLS, cross-signs, device compatibility, and TLS record size.

Both the Chrome and Mozilla root program have signaled the intent to substantially shorten the time we rely on roots in the WebPKI. I believe this to be a good objective but I am struggling to get my head around the viability and implications of the change.

In this post, I wanted to capture my inner dialog as I try to do just that 🙂

I figure a good place to start when exploring this direction is why this change is a good idea. The simplest answer to this question is probably that root certificates are really just “key bags” — by that I mean they are just a convenient way to distribute asymmetric keys to clients. 

Asymmetric keys have an effective lifetime, this means the security properties they offer start to decay from the moment the key is created. This is because the longer the key exists the more time an attacker has had to guess the corresponding private key from its public key, or worse compromise the private key in some way. For this reason, there are numerous sources of guidance on usage periods for asymmetric keys, for example, NIST guidance from 2020 says that a 2048 key is usable between 2019 and 2030.

There is also the question of ecosystem agility to consider. Alexander Pope once said To Err is Human, to forgive divine. This may actually be the most important quote when looking at computer security. After all, security practitioners know that all systems will have security breaches, this is why mature organizations focus so much on detection and response. I believe the same thing is needed for ecosystem management, the corollary, in this case, is how quickly you can respond to unexpected changes in the ecosystem.

Basically having short-lived root keys is good for security and helps ensure the ecosystem does not become calcified and overly dependent on very old keys continuing to exist by forcing them to change regularly.

With that, all said, if it were easy we would already be doing it! So what are the challenges that make it hard to get to this ideal? One of the hairiest is the topic of the Internet of Things (IOT). Though I would be the first to admit there is no one size fits all answer here, broadly these devices should not use the WebPKI.

In 2022, the market for the Internet of Things is expected to grow 18% to 14.4 billion active connections. It is expected that by 2025, as supply constraints ease and growth further accelerates, there will be approximately 27 billion connected IoT devices. 

IOT-Analytics.com

A big reason for this is that these devices last a very long time compared to their mobile phone and desktop counterparts. They also, unfortunately, tend not to have managed root stores and if they do, they do it as part of firmware updates and have limited attach rates of these updates. To make things worse these devices take crude simplifying assumptions around what cryptographic algorithms are supported and what root CAs will be used by servers in the future.

But for most IoT applications, like those enabling the smart city, the device life cycle is 10 to 20 years or more. For instance, it doesn’t make sense to replace the wireless module in smart streetlights every few years.

Ingenu

A good topical example of the consequences here might be the payment industry making a decision in the 90s to adopt a single WebPKI CA  (a VeriSign-owned and operated root certificate) in payment terminals without having a strategy for updating the device’s root stores.  These terminals communicated to web servers that were processing payments. In short, the servers had to use certificates from this one WebPKI Root CA or no payment terminals could reach them.

This design decision was made during a time when SHA-1 was considered “secure”. The thing is cryptographic attacks are always evolving, and since 2005 SHA-1 has not been considered secure. As a result, browsers moved to prevent the use of this algorithm. 

This meant that one of two things would happen, either browsers would break payment terminals by preventing WebPKI CAs from using this algorithm, or payment terminals’ lack of an update strategy would put the internet at risk by slowing the migration from SHA-1. Unfortunately, the answer was the latter.

In short, when you have no update story for roots and you rely on the WebPKI you are essentially putting both your product and the internet at risk. In this case, while a root and firmware update story should have existed regardless, the payment industry should have had a dedicated private PKI for these use cases.

OK, so what does this have to do with moving to a shorter root validity period in Browser root programs? Well, when a TLS server chooses what certificate to present to a client it doesn’t know much more than the IP address of the client. This means it can’t selectively choose a TLS certificate based on it being an IOT device, a phone running an old version of a browser, or a desktop browser.

This is where the concept of “root ubiquity” and what those in the industry sometimes called “root baking”. Some root programs process requests for new root inclusion very quickly, maybe within a year your root can become a member of their program but that isn’t enough.  You need the very large majority of the devices that rely on that root program to pick up the new root before the devices will trust it.

In the case of Microsoft Windows, the distribution of a root certificate happens via a feature called AutoRoot Update. The uptake for consumer devices of a new root is very high as this is seldom turned off and the URL that is used to serve this update is seldom blocked. Enterprises and data centers are another matter altogether though. While I do not have any data on what the split is, anecdotally I can say it’s still hit or miss if a root has been distributed in this system as a result of this.

Chrome on the other hand uses a configuration management system for all Chrome that also happens to control what roots are trusted. Again while I have no data I can point out anecdotally it appears this works very well and since chrome updates all browsers automatically they tend to have the latest binaries and settings.

Safari on the other hand manages the roots in the firmware/operating system update. This means if a user does not update their devices’ software the roots will never be present even if you are a member of the root program.

These are just a few examples of some of the root programs CAs have to worry about, and the problems they have to consider.  

What this means is the slowest root program in the WebPKI to accept and distribute roots holds back the adoption of new CAs.  

As an aside, It is worth noting that around 59% of all browser traffic (not including IoT devices) is mobile. This includes a lot of developing country traffic where phones are kept longer and replacement models are often still old models with older software and root stores that are not updated. This is before you get to TVs, printers, medical devices, etc that seldom do forced firmware updates and never manage roots independently from firmware.

As a result of the above, these days I generally tell people that it takes 5-7 years post inclusion to get sufficient ubiquity in a root to be able to rely on it for a popular service as a result.

A CA will typically try to address this problem by acquiring what is known as a cross-sign (see Unobtainium), there are two recent examples of this I can point to. One is the cross-sign for Let’s Encrypt and the other is the cross-sign for Google Trust Services. The problem is most CAs don’t want to help other CAs with cross-signs for obvious reasons. Beyond that increasingly there are fewer and fewer of the “old keys” still in use on the web that is baked into the oldest devices meaning there are not a lot of choices for those cross signs even if you can get one.

Let’s assume for the purpose of this (now long) post that you are able to get a cross sign either from a competitor or because you happen to have custody of older key material that was grandfathered into the root program that has the needed ubiquity.

In the simplest case, you get to a situation where you are asking those that use your certificates to include the two CA certificates in their TLS bundle.  At a minimum, we start to pay a performance penalty for doing this.

As an example consider that each certificate is about 1.5KB in size, by adding this new certificate to the bundle every fresh TLS negotiation will carry this tax.  If we assume a typical chain is normally 3 in length that makes our new total 4.5kb in overhead. It’s not a large figure but if you consider a high-traffic site like Amazon it adds up quickly.

How many purchases are made on Amazon daily? On a daily basis, Amazon ships more than 66,000 orders per hour in the US. About 1.6 million packages are shipped on a daily basis.

capitalcounselor.com

If we assume each of Amazon’s orders equates to a single fresh TLS negotiation (it should be many more than that since many servers power the site) that is a daily increase of 3.6GB of traffic. Now Amazon can deal with that with no problem but it would slow down the experience for users, and potentially cost those users without unlimited internet plans some of their allotted bandwidth. There is also the potential of fragmentation as the TLS packets get larger which increases the latency for the user.

Don’t get me wrong, these are not deal breakers but they are taxes that this cross sign approach represents. 

My fear, and to be clear I’ve not completed the thought process yet, the above story creates a situation where CAs need to provide multiple cross signs to support all the various device combinations that are out there in this new world.

If so this scares me for a few reasons, off the top of my head these include:

  1. It is already hard enough to get a single cross sign doing so multiple times will be that much harder,
  2. It will put new entrants at a disadvantage because they will not have legacy key material to rely on nor the high capital requirements to secure cross signs if commercial terms can even be reached allowing them to get one,
  3. We have spent the last decade making TLS the default and we are close to being able to declare victory on this journey if TLS becomes less reliable we may lose ground on this journey,
  4. It is a sort of regressive taxation on people with older and slower devices that are likely already slow and paying for data on a usage basis.
  5. The additional data required will have a negative impact on Time to First Paint (TTFP) in that this extra data has to be exchanged regardless.

Mom always said don’t complain if you don’t have a proposal to make things better, so I figure I should try to propose some alternatives. Before I do though I want to reiterate that this post isn’t a complaint, instead it’s just a representation of my inner dialog on this topic. 

OK, so what might be a better path for us getting to this world of shorter-lived roots? I guess I see a few problems that lead to the above constraints

  1. Even in the browser ecosystem, we need to see root lists updated dynamically,
  2. Inclusion into a root store should take months for your initial inclusion and later updates should happen in weeks,
  3. Browsers should publish data to help CAs understand how ubiquitous their root distributions are so they can assess if cross signs are even necessary,
  4. There needs to be some kind of public guidance to IoT devices on what they should be doing for the usage of certificates in their devices and this needs to include root management strategies.
  5. IOT devices need to stop using the WebPKI, it is increasingly the Desktop and Browser PKI and anything else will get squashed like a bug in the future if they are not careful 🙂
  6. There should be a Capability and Maturity Model for root programs and associated update mechanisms that can be used to drive change in the existing programs 
  7. CAs should stop using one issuing hierarchy for all cases and divide up the hierarchies into as narrow of slices as possible to reduce the need for one root to be trusted in all scenarios.
  8. Root programs should allow and go so far as to encourage CAs to have more than the 3 (typical) roots they allow now to support CAs in doing that segmentation 
  9. WebPKI root programs should operate two root programs, the legacy one with all of its challenges and the new one focused on agility, automation, and very narrow use cases. Then they should use the existence of that program to drive others to the adoption of those narrower use cases.
  10. And I guess finally we have a chance with the Post Quantium TLS discussions to look at creating an entirely new WebPKI (possibly without X.509!) that is more agile and narrow from the get-go.

Why crawling is not an adequate measurement methodology for the WebPKI

The answer is simple — It’s an incomplete view of the use of the WebPKI.

There are a number of different methodologies a web crawler-based approach might take in measuring the size of the WebPKI. The most naive approach would be to simply scan all IPv4 address space and log all of the certificates you see during this scan.

The problem is that this only shows a small fraction of the certificates that are out there. When you connect to an IP address and the associated web server doesn’t know what host you are trying to connect to it will return its “default” website and use the associated certificate.

That same IP address may literally be responsible for serving millions of sites based on the client’s indicated hostname. With this IP-based enumeration approach at best you would get one certificate from that host, at worse you wouldn’t even get that because some servers are not configured with a default site. This is just one problem with this approach there are many more.

Though most WebPKI market share reports do not document their methodology anecdotally it appears most work on this crawler approach and at least historically some have taken periodic drops from CAs to make their view “more complete”.

Today though the only way to measure CA market share that should be used is by relying on the pre-certificate counts in Certificate Transparency logs.

How to measure the WebPKI ecosystem

The web is dependent on there being a robust, secure, and scalable set of CAs being able to provide TLS certificates. It is unhealthy for there to be a single provider because if for any reason they have an operational or security issue they could become unavailable leaving the web in a world of hurt.

Beyond that in the name of TLS reliability TLS certificate consumers should be relying on multiple CAs for their certificates. For example, to reduce exposure to outages your certificate lifecycle management solution should support failover from one CA to the next. 

Another example of why you should use multiple CAs is to help ensure relying on party agility to changes in CAs, for example, if a CA changes which root key material they use you may lose (or gain) device compatibility, or if an issuing CA changes and someone is pinning you might break them. By to ensure device compatibility long term one should use multiple CAs to help ensure the relying party ecosystem you support is agile to these changes.

For this to work though you need to have an ecosystem of CAs you can use interchangeably, ACME (RFC 8555) helps here substantially because it provides a normalized way to interact with CAs to get these certificates. That is only helpful if there are multiple CAs that implement the protocol and if those CAs are able to scale to meet the needs of those who rely on them.

This is particularly important when you look at SaaS-like offerings the larger ones will often demand millions of certificates that need to be able to be revoked and re-issued in less than 24 hours in some cases so the scalability of the CA becomes particularly important.

Assessing the scalability of a CA is hard but one of the closest proxies you have is their overall market share.

In the US, according to the Google Transparency Report, 97% of all web traffic is protected with TLS. To put that in context there were 366.8 million registered domain names as of 2022.

Certificates can represent more than one domain name so depending on what you are measuring certificate count may not be the best metric to asses CA market share. With that said in the context of scalability, it’s probably a good metric.

What are some ways to evaluate the CA impact and market share?

  • How many certificates are issued by the CA and are unexpired.
  • How many domains are contained within the unexpired certificates issued by a CA.
  • What percentage of web traffic would be covered by the certificates issued by a CA.
  • What percentage of certificates issued by the CA are unexpired and actively in use.

Each of these answers different questions, and they progressively get harder to measure as you go down the list. The easiest by far is how many certificates are issued and still unexpired. This is because all CAs log what is called a pre-certificate to the Certificate Transparency ecosystem before issuance.

NOTE: Publication of a pre-certificate is not required by the rules of the ecosystem however not doing so would mean that users relying on that certificate would get an error.

While the existence of a pre-certificate doesn’t promise the certificate is in use it does signal that someone who controlled that domain wanted to use a certificate for that domain. They wouldn’t have bothered going to the trouble of doing that if there was not an intent to use the certificate in some way.

The easiest way to look at this data is to use the excellent https://crt.sh/cert-populations report. While it does go down from time to time it also provides very fresh views into the un-expired pre-certificate count.

NOTE: Since not all CAs publish what is referred to as the “final certificate” you can safely ignore the Certificate count data on this report.

So what does this data look like (As of July 29th, 2022)?

CertificatesPrecertificates
ALLUnexpiredALLUnexpired% of Unexpired Population
Internet Security Research Group2,834,892,521264,685,3352,553,476,280228,023,48050.18%
Sectigo109,399,9847,245,014373,669,758106,119,71323.35%
DigiCert560,740,35744,640,273497,448,38945,475,97210.01%
GoDaddy6,371,9601,874,81252,669,26031,293,3046.89%
Google Trust Services LLC17,28417828,112,66215,443,3063.40%
Amazon13,540,55698,980104,887,85914,757,6503.25%
GlobalSign nv-sa16,729,66393723,636,7786,893,7281.52%
Actalis55233,236,4931,691,7440.37%
Asseco Data Systems S.A. (previously Unizeto Certum)6,298,4726209,375,7421,571,8520.35%
Start Commercial (StartCom) Ltd.1,495,580982,866,004883,0220.19%
?1,241,4632143,924,285567,4800.12%
Entrust739,9015242,304,521554,4310.12%
SECOM Trust Systems CO., LTD.156,234-112,217,668242,8150.05%
WoSign CA Limited88,6607250,823110,1010.02%
Certainly LLC31,361205240,103101,5330.02%
Buypass186,2002702,127,22898,8350.02%
QuoVadis53,636432236,06397,4540.02%
SecureTrust311,226227301,19778,4890.02%
Microsoft Corporation Core Services Engineering & Operations ( “Microsoft CSEO”)216,44873,560212,90574,6970.02%
Deutsche Telekom Security GmbH57,57032147,94949,5560.01%
JPRS15,7383482,64236,5120.01%
SwissSign AG237,88668,27283,50426,9750.01%
Government of Spain, Fábrica Nacional de Moneda y Timbre (FNMT)86,87223,86657,20623,7720.01%

What you will see is the top 5 CAs out of 233 issue 98.59% of all TLS certificates. While I would like to see this distribution be more normalized to ensure that the ecosystem is not overly dependent on any one entity as far as health goes it does show there are several large providers out there that support the Web who have demonstrated they can scale to meet large certificate consumption needs.

One thing you will notice in this data is that the variability in the pre-certificate “ALL” and “Unexpired” count is quite large in some cases. This is because some CAs like Let’s Encrypt and Google Trust Services either predominantly, or exclusively issue shorter-lived certificates. This results in the certificate count in “All” being much higher than the “Unexpired” case.

So what can we take away from this data? I think there are four key takeaways:

  1. Support of certificate issuance via ACME has made shorter-lived certificates viable and they now represent the large majority of certificates on the web.
  2. Support of ACME has helped grow the percentage of the web that is encrypted from about half of the web to nearly 100% of the web.
  3. 2.15% of CAs issue 98.59% of all TLS certificates on the web.

Cryptographic controls and feature trade-offs

In an earlier post, I discussed how the use of cryptographic controls can help enable those building privacy governance programs to both deliver on their objectives of meeting their privacy obligations and enabling them to do so in an enforceable and misuse-resistant manner.

As I was discussing this post with someone they brought up the topic of feature trade-offs one must take when utilizing cryptographic controls. The canonical example I hear seems to be bots/assistance in end-to-end protected messaging apps. The thesis goes that in e2e chats these features are not possible, the reality is that they are, it just is harder to do.

This is why I said in that earlier post “More work is needed to make it so the smaller organizations can adopt these patterns”. This is because the boilerplate to enable these scenarios is largely missing.

Alec Muffet talks a bit about this specific scenario in his recent talk about his IETF draft.

To be clear, my reference to cryptographic controls in that post is not limited to end-to-end encryption. There are many ways such cryptographic controls can be applied, depending on objectives and constraints. For example, a useful tool for mitigating insider threats of abused data is limiting access to real user data and auditing access via append-only ledgers.

In many respects, the points are more about moving beyond procedural and manual controls to technical controls that are both strong and demonstrable.

Evolution of privacy governance and how cryptographic controls can help

Unfortunately, most organizations do not have a formal strategy for privacy, and those that do usually design and manage them similarly to their existing compliance programs.

This is not ideal for several reasons which I will try to explore in this post but more importantly, I want to explore how the adoption of End-To-End encryption and Client-Side encryption is changing this compliance-focused model of privacy to one backed by proper technical controls based on modern cryptographic patterns. 

If we look at compliance programs they usually evolve from something ad-hock and largely aspirational (usually greatly overselling what they deliver) and over time move to a more structured process-oriented approach that is backed with some minimum level of technical controls to ensure each process is followed. 

What is usually missing in this compliance journey is an assessment of sufficiency beyond “I completed the audit gauntlet without a finding”. This is because compliance is largely focused on one objective — proving conformance to third-party expectations rather than achieving a set of contextually relevant security or privacy objectives – This is the root of why you hear security professionals say “Compliance is not Security”.

If you watch tech news as I do, you have surely seen news articles calling the cybersecurity market “the new lemon market “, and while I do agree this is largely true I also believe there is a larger underlying issue — an overreliance on compliance programs to achieve security and privacy objectives.

To be clear, the point here is not that compliance programs for privacy are not necessary, instead, what I am saying is they need to be structured differently than general-purpose compliance programs, as the objectives are different. These differences lend themself to misuse resistant design and the use of cryptographic controls as an excellent way to achieve those objectives.

Misuse resistance is a concept from cryptography where we design algorithms to make implementation failures harder. This is in recognition of the fact that almost all cryptographic attacks are caused by implementation flaws and not fundamental breaks in the cryptographic algorithms themselves. 

Similarly, in the case of privacy, most companies will not say “we intend to share your data with anyone who asks”. Instead, they talk of their intent to keep your information confidential — the problem is that in the long run everyone experiences some sort of failure and those failures can make it impossible to live up to that intent.

So back to this compliance-focused approach to privacy — it is problematic in several cases, including:

  • Where insiders [1,2,3] are abusing their position within an organization,
  • When configuration mistakes result in leakage of sensitive data [4,5,6], 
  • When service providers fail to live up to customers’ expectations on data handling [7,8], 
  • When technical controls around data segmentation fail [9],
  • and of course when service providers fail to live up to their marketing promises for government access requests for your sensitive information [10,11].

If we move to a model where we approach these problems using engineering principles rather than process and manual controls we end can end up in a world where the data and access to it are inherently misused resistant and hopefully verifiable.

This is exactly what we see in the design patterns that have been adopted by Signal, namely they gather only the minimal level of data to deliver the service, and the data they do gather they encrypt in such a way to limit what they can do with it.

They are not the only ones though can see the similar approaches from Android and how they handle encrypted backups as well as in Apple in how they handle device pin recovery

Another great example is how payment providers like Stripe leverage client-side encryption to reduce exposure of payment details to intermediaries or how Square uses client-side encryption in the Cash App to limit adversaries’ access to the data.

While today these patterns are only being applied by the largest and most technically advanced organizations the reality is that as Alexander Pope once said “to err is human” and if we are to truly solve for privacy and security we have to move to models that rely less on humans doing the right thing and for privacy, this means extensive use of cryptographic patterns like those outlined above.

It could be argued that of the reasons we do not see these patterns applied more is security the nihilist’s argument that client-side encryption and cryptographic transparency are exercises of re-arranging deck chairs on a sinking ship.

While there is some truth to that argument you can both limit the amount of trust you have to place in these providers (limiting the amount of trust delegated is the essence of security after all!) and make elements of what the provider does verifiable which again furthers this misuse resistant objective.

If that is the case then why is it that only the largest providers do this today? I would argue it’s just too darn hard right now. For example, when you start applying client-side encryption and cryptographic controls to systems there is still a substantial lift, especially when compared to the blind trust paradigm most systems operate within.

There are a few reasons, but one of the largest in the case of client-side encryption is that you end up having to build the associated key management frameworks yourself and that takes time, and expertise that many projects simply do not have access to.

With that said just like modern systems have moved from self-hosted monoliths to microservices that are globally scaled thanks to solutions like Kubernetes which in turn gives them node to node compartmentalization and other by default security controls, I believe we will see a similar move for sensitive data handling where these cryptographic controls and usage policies become a key tool in the developer’s toolbox.

More work is needed to make it so the smaller organizations can adopt these patterns but, unquestionably, this is where we end up long term. When we do get here, to borrow an over-used marketing term, we end up what might be called Zero Trust Data Protection in today’s market.

How is ACME different than XCEP/WSTEP anyway?

If you read my blog there is a reasonable chance that you are familiar with RFC 8555, the standard for Automatic Certificate Management Environment (ACME). Even though ACME is a relatively young protocol it is already used by the majority of websites on the internet for certificate lifecycle management.

While I won’t go into a lot of detail for this post to make sense you have to understand a couple of things about the ACME protocol. 

The first is that it works on the concept of dynamic “account” registration. By that I mean requestors can in real-time, request that an “account” be created for them. This account is represented by a public key pair that the ACME service will use to persist meta-data about the requestor. The ACME service can deny this request for any reason it likes but commonly in Web PKI as long as the request is wellformed it is accepted.

The next thing you need to understand is that it has the concept of “challenges” that can be used to communicate conditions that must be met before a certificate is issued. For example, an ACME service may request that the account holder demonstrate that they are authorized to get a certificate for a given domain name by placing a specific value in DNS at a well-known location. Since only a DNS administrator could perform that action the ACME service can have confidence the requestor controls the name it has requested a certificate for.

And finally, there is nothing in the ACME protocol that limits its use to just web server certificates. It is a general framework that can be used to acquire and manage certificates of any type. For example, CISCO is using ACME in their WebEx offering to facilitate the acquisition of what are essentially email certificates via OIDC authentication as a way to authenticate chat members.

But there is another very popular protocol, a well set of protocols that fewer people know about, that is XCEP and WSTEP. These protocols are used by Windows machines to both determine what kind of certificates a machine or user should enroll for as well as enabling the enrollment for those certificates. 

Similar to ACME these protocols also support, although in a more ridged rigid way, the ability for the issuer to challenge the client for additional information necessary to get a certificate of a particular type. For example, you can configure a certificate type (known as a template) to require that the requestor provide a cryptographic attestation backed by a TPM to be used to prove the machine belongs to the organization operating the certificate authority.

There are differences though, the first of which is the concept of a template, this enables XCEP/WSTEP to have one URL endpoint issue many types of certificates which is very important within an enterprise which is where certificates are used for many different scenarios.

Another difference is that XCEP/WSTEP presume the authorization of the client happened out of the band before the client requested the certificate. The dynamic approach to challenges that was adopted by ACME allowed it to tackle this problem in-band or rely on the out-of-band authorization. It supports this out-of-band concept through the concept of External Account Binding which allows the requestor to use an API key gathered out of band to prove on account creation the account key is associated with some pre-enrolled user.

And finally, ACME has a clear model for extensibility built into it. What this means is that one can easily extend it with additional capabilities. The most fundamental part of this is the Directory resource which lists all of the APIs supported by this ACME instance. One could use this, for example, to add a “Templates” API that would allow an ACME client to request specific types of certificates from the ACME endpoint.

Similarly, the concept of the challenge allows the server to demand the client do any number of things before the certificate is to be issued so the idea of adding a TPM challenge, for example, is trivial within this framework.

In short, ACME, contrary to popular belief, is not a protocol for getting and managing website certificates it is a framework for getting and managing any certificate. More importantly, it is extensible in such a way that with just a few minor additions it would be a proper superset of all the capabilities within the Windows enrollment protocol suite.

Why is this important? That’s easy! When I talk to anyone who is using certificates at any reasonable scale their concerns almost instantly come to the complexity of managing the certificate lifecycle management of those certificates across the various products and services that use them.

When we look at this complexity most of it arises from the use of a mish-mash of solutions for lifecycle management that when viewed in isolation seemed sufficient but when looked at holistically were actually woefully insufficient. 

If as an industry we move these legacy systems to a single protocol so that certificates regardless of them being for public or private PKI or representing users, machines or workloads use one protocol we will have a reliable substrate that we can use to authenticate and authorize with agility.

The next decade of Public Key Infrastructure…

Background

Before we talk about the future we need to make sure we have a decent understanding of the past. X.509 based Public Key Infrastructure originally was created in the late 80s with a focus on enterprise and government use cases.  These use cases were largely for private systems, it was not until a decade later this technology was applied to the internet at large.

Since the standards for enrollment and lifecycle management at the time were building blocks rather than solutions and were designed for government and enterprise use cases rather than the internet, the Web PKI, as it became known, relied largely on manual certificate lifecycle management and a mix of proprietary automation solutions.

While the use of PKI in the enterprise continued, primarily thanks to Microsoft AD/CS and its automatic certificate lifecycle management (I worked on this project), the Web PKI grew in a far more visible way. This was primarily a result of the fact that these certificates had to be acquired manually which led to the creation of an industry focused on sales and marketing of individual certificates.

The actors in this system had no incentive to push automation as it would accelerate the commoditization of their products. The reality was that these organizations had also lost much of their technical chops as they became sales and marketing organizations and could no longer deliver the technology needed to bring this automation anyways.

This changed in 2016 when the Internet Security Research Group, an organization I am involved in, launched Let’s Encrypt. This was an organization of technologists looking to accelerate the adoption of TLS on the web and as such started with a focus on automation as it was clear that without automation growth of HTTPS adoption would continue to be anemic. What many don’t know is in when Let’s Encrypt launched HTTPS adoption was at about 40% and year over year growth was hovering around 2-3%, about the rate of growth of the internet and — it was not accelerating. 

Beyond that TLS related outages were becoming more frequent in the press, even for large organizations. Post mortems would continuously identify the same root causes, a manual process did not get executed or was executed incorrectly.

The launch of Let’s Encrypt gave the Internet the first CA with a standards-based certificate enrollment protocol (ACME), this combined with the short-lived nature of the certificates they issued meant those that adopted it would have to use automation for their services to reliably offer TLS. This enabled products to make TLS work reliably and by default, a great example of this is the Caddy web server. This quickly took the TLS adoption rate to around 10% year over year and now we are hovering around 90%+ HTTPS on the internet.

While this was going on the concept of microservices merged with containers which led to container-orchestration, which later adopted the concept of mesh networking. This mesh networking was often based on mutual-TLS (mTLS). The most visible manifestation of that being SPIFFE, the solution used by Kubernetes.

At the same time, we saw networks becoming more composable, pushing authentication and authorization decisions out to the edge of the network. While this pattern has had several names over the years we now call it Zero Trust and a visible example of that today is Beyond Corp from Google. These solutions again are commonly implemented ontop of mutual TLS (mTLS).

We now also see the concept of Secure Access Service Edge (SASE) or Zero-Trust Edge gaining speed which extends this same pattern to lower-level network definition. Again commonly implemented ontop of mTLS.

The reality is that the Web PKI CAs were so focused on sales and marketing they missed almost all of these trends. You can see them now paying lip service to this by talking about DevOps in their sales and marketing but the reality is that the solutions they offer in this area are both too late and too little. This is why cloud technology providers like Hashicorp and cloud providers like Amazon and Google (I am involved in this also) had to step in and provide their offerings.

We now see that Web PKI CAs are starting to more seriously embrace automation for the public PKI use cases, for example, most of the major CAs now offer ACME support to some degree and generally have begun to more seriously invest in the certificate lifecycle management for other use cases.

That being said many of these CAs are making the same mistakes they have made in the past. Instead of working together and ensuring standards and software exist to make lifecycle management work seamlessly across vendors, most are investing in proprietary solutions that only solve portions of the problems at hand.

What’s next?

The usage of certificates and TLS has expanded massively in the last decade and there is no clear alternative to replace its use so I do not expect the adoption of TLS to wain anytime soon.

What I do think is going to happen is a unification of certificate lifecycle management for private PKI use cases and public PKI use cases. Mesh networking, Zero-Trust, and Zero-Trust edge is going to drive this unification.

This will manifest into the use of ACME for these private PKI use cases, in-fact this has already started, just take a look at Cert Manager and Small Step Certificates as small examples of this trend. 

This combined with the ease of deploying and managing private CAs via the new generation of Cloud CA offerings will result in more private PKIs being deployed and the availability problems from issues like certificate expiration and scalability will no longer be an issue.

We will also see extensions to the ACME protocol that make it easier to leverage existing trust relationships which will simplify the issuance process for private use cases as well as ways to leverage hardware-backed device identity and key protection to make the use of these certificate-based credentials even more secure.

As is always the case the unification of common protocols will enable interoperability across solutions, improve reliability and as a result accelerate the adoption of these patterns across many products and problems.

It will also mean that over time the legacy certificate enrollment protocols such as SCEP, WSTEP/XCEP, CMC, EST, and others will become less common.

Once this transition happens this will lead us to a world where we can apply policy based on subjects, resources, claims, and context across L3 to L7 which will transform the way we think about access control and security segmentation. It will give both more control and visibility into who has access to what.

What does this mean for the Web PKI?

First I should say that Web PKI is not going anywhere – with that said it is evolving.

Beyond the increase in automation and shorter certificate validities over the next decade we will see several changes, one of the more visible will be the move to using dedicated PKI hierarchies for different use cases. For example, we will ultimately see server authentication, client authentication, and document signing move to their own hierarchies. This move will better reflect the intent of the Web PKI and prevent these use cases from holding the Web PKI’s evolution back.

This change will also minimize the browser influence on those other scenarios. It will do this at the expense of greater ecosystem complexity around root distribution but the net positive will be felt regardless. I do think this shift will give the European CAs an advantage in that they can rely on the EUTL for distribution and many non-web user agents simply do not want to manage a root program of their own so the EUTL has the potential to be adopted more. I will add that is my hope these user agents instead adopt solution-specific root programs vs relying on a generic one not built for purpose.

The Web PKI CAs that have not re-built their engineering chops are going to fall further behind the innovation curve. Their shift from engineering companies to sales and marketing companies resulted in them missing the move to the cloud and those companies that are going through digital transformation via the adoption of SaaS, PaaS, and modern cloud infrastructures are unlikely to start that journey by engaging with a traditional Web PKI CA.

To address this reality the Web PKI CAs will need to re-invent themselves into product companies focusing on solving business problems rather than selling certificates that can be used to solve business problems. This will mean, for example, directly offering identity verification services (not selling certificates that contain assertions of identity), providing complete solutions for document signing rather than certificates one can use to sign a document or turnkey solutions for certificate and key lifecycle management for enterprise wireless and other related use cases.

This will all lead to workloads that were once on the Web PKI by happenstance being moved to dedicated workload/ecosystem-specific private PKIs. The upside of this is that the certificates used by these infrastructures will have the opportunity to aggressively profile X.509 vs being forced to carry the two decades of cruft surrounding it like they are today.

The Web PKI CAs will have an opportunity to outsource the root certificate and key management for these use cases and possibly subcontract out CA management for the issuing CAs but many of these “issuing CA” use cases are likely to go to the cloud providers since that is where the workloads will be anyway.

Due to the ongoing balkanization of the internet that is happening through increased regional regulation, we will see smaller CAs get acquired, mainly for their market presence to let the larger providers play more effectively in those markets.

At the same time, new PKI ecosystems like those used for STIR/SHAKEN and various PKIs to support IoT deployments will pop up and as the patterns used by them are found to be inexpensive, effective, and easily deployable they will become more common.

We will also see that the lifecycle management for both public and private PKI will unify ontop of the ACME enrollment protocol and that through that a new generation of device management platforms will be built around a certificate-based device identity anchored in keys bound to hardware where the corresponding certificates contain metadata about the device it is bound to.

This will lay the groundwork for improved network authentication within the enterprise using protocols like EAP-TTLS and EAP-TLS, enable Zero-Trust and Zero-Trust Edge deployments to be more easily deployed which will, in turn, blur the lines further between what is on-premise and what is in the cloud.

This normalization of the device identity concepts we use across solutions and the use of common protocols for credential lifecycle will result in better key hygiene for all use cases, and simplify deployment for those use cases.

Accountability and Transparency in Modern Systems

Over the last several decades we have seen the rate of technological innovation greatly accelerate. A key enabler of that acceleration has been the move to cloud computing which has made it possible for hardware, software, and services to be shared. This significantly reduced both the capital and time necessary to adopt and operate the infrastructure and services built on these platforms.

This migration started by enabling existing software to run using dedicated computers and networks owned and operated by someone else. As these computers got faster and the tools to share the physical hardware and networks were built, the cost of technological innovation reduced significantly. This is what democratized modern startup entrepreneurship as it made it cost-effective for individuals and small businesses to gain access to the resources once only available to the largest companies.

This flipped technological innovation on its head. It used to be that government and big businesses were the exclusive sources of technological innovation because they were the ones who could afford to buy technology. The lowering of the cost of innovation is what gave us the consumer startups we have today. This drew the attention of large companies to this emerging market and led to the creation of the modern smartphone which was fundamental to creating the market opportunity we see in consumer startups. This was a scale opportunity that was fundamentally different than the prior government and enterprise models of innovation.

As enterprises saw the rate of innovation and agility this new model provided, it became clear that they too needed to embrace this model in their businesses. It is this reality that led to the creation of Salesforce, the first Software As a Service, and AWS, the first to market with a modern Cloud Service Provider. It was these offerings that gave us Software As a Service (SaaS), Platform As a Service (PaaS), and what we think of as modern cloud infrastructure.

At first, these enterprises only moved greenfield or very isolated projects to the cloud but as the benefits of the new model became irrefutable and the capabilities of these offerings were enriched in ways that were impractical to replicate in their environments, they started moving more business-critical offerings. We can see this trend continues today, a recent survey found that 55% of IT organizations are now looking at ways to reduce their on-premise spending. This will lead to many legacy systems being replaced with more modern, scalable, agile, and secure solutions.

That same survey found that digital transformation and security are the two biggest reasons for this shift. This is no surprise when we look at how capital efficient modern businesses are relative to those based on legacy IT and manual processes, or how vulnerable legacy IT systems are to modern attacks. 

This does beg the question, what is next?. I believe that two trends are emerging. The first being the democratization of compliance for modern systems and the second being the shift in expectations of what does it mean to be “secure”.

If we look at the first trend, the democratization of compliance, we see the internet becoming balkanized through regulation and governments seeking to get more control over what people do on the internet. Increased regulation makes it significantly harder for new entrants to compete, which in turn helps entrench the incumbents who can often eat the engineering and compliance costs associated with the regulations. When you think about this in the context of the global economy in which the internet exists, an economy made up of 195 independent sovereign countries, the compliance burden becomes untenable.

Modern Cloud Service Providers can make a significant dent in this by making it possible for those who build on them to meet many of these compliance obligations as a byproduct of adopting their platforms.

In the near term, this will likely be focused on the production of the artifacts and audit reports that are needed to meet an organization’s current compliance requirements but if we project out, it will surely evolve to include services for legal identity verification, content moderation, and other areas of regulatory oversight. A decade from now I believe we will see systems being built on these platforms in such a way that they will be continually compliant producing the artifacts necessary to pass audit as a natural byproduct of the way they work. 

This will in turn make it easier to demonstrate compliance and create new opportunities such as auditors continually monitoring an organization for its compliance with guidelines rather than just doing annual point-in-time assessments as is done today.

This has also led to companies like Coalition building offerings that let customers augment existing systems with the artifacts to demonstrate conformance with security best practices are being met so that insurance companies can offer more affordable risk-based insurance policies.

As we look at the second trend, the redefinition of what it means to be secure, we can see consumers becoming more aware of security risks and as a result, their expectations around the sovereignty of their data and the confidentiality of their information evolving. 

One response to this realization is the idea of decentralization. The thesis here is arguably is that there can be no sovereignty as long as there is centralization. In practice, most of these decentralized systems are in-fact quite centralized. While there are many examples of this, one of the more visible has been the DAO hard fork which was done to recover stolen funds or the simple fact that 65% of Bitcoin mining happens in China. Additionally, for the most part, the properties that enable sovereignty typically come from the use of verifiable data-structures and cryptography and not decentralization. That is not to say these systems do not have a place, I would argue that their success and durability so far at least suggests there is “a there, there” but I would also say that, at least currently, they do not yet live up to their full promise. 

Another response to this is the consumer adoption of End-To-End encryption in messaging applications (even iMessage is end-to-end encrypted!) and by extension to that problem the verifiability of the systems that implement these schemes. 

The best example here is probably Signal, they spent time designing security and privacy into their messaging protocol and implementing systems from the beginning, modeling its design on modern threats and decades of learning about what does, and does not work. This approach led to the protocol that they defined being adopted by many of their competitors, including WhatsApp, Facebook Messenger, Skype, and Google Allo.

Signal is also a great example of the verifiability property, in particular, the work they have done with Contact Discovery is exciting. What they have done with this feature is first to minimize what information they need to deliver the capability in the hope to limit future abuse. Secondly, they leveraged technologies like SGX, which is an example of a Confidential Compute, that enables them to demonstrate what they are doing with the information they do collect. This introduces transparency and accountability which both are important ingredients to earning trust.

The use of hardware security as a key component of the security boundary has already found its way from consumer phones, laptops, and tablets to the cloud. For example, Google Cloud‘s Shielded VMs and Azure Trusted Launch use hardware to provide verifiable integrity to VM instances to make it possible to detect VMs compromised by boot- or kernel-level malware or rootkits similar to how Apple does with the iPhone. We also now see AMD Sev and SGX seeing broader deployment in the larger Cloud Service Providers (I will be the first to admit these technologies have room to grow if they are to live up to their promises but they are promising none the less).

With this foundation, the industry is starting to look at how they can bring similar levels of transparency and accountability into applications and ecosystems too. One of the projects that have demonstrated that doing this can have a big impact is Certificate Transparency. As a result of the investments in deploying Certificate Transparency, the internet is now materially more secure than it was before and this is a direct result of introducing accountability into an opaque ecosystem based on blind trust.

Another example in this space is the Golang Checksum Database where verifiable data-structures like Merkle Trees are being used to introduce accountability into the software supply chain as a means to mitigate risks for those who rely on the Golang ecosystem. 

For many problems in the security space, you can solve from one of two philosophical bases. You can either create privileged systems only visible to a few that you hope aren’t corruptible or you can build democratizing transparency into the system as a check on corruption.

Dino A. Dai Zovi

While the earlier examples are using combinations of hardware, cryptography, and verifiable data-structures to deliver on these properties, other examples take a more humble approach. For example, Google Cloud’s Access Transparency uses privilege separation, audit logs, and workflows to provide the fundamental ability to track business justifications for access to systems and data. The existence of these systems is further validation that the trend of verifiability is emerging.

So what should you take away from this post? I suppose there are four key messages:

  1. The definition of security in modern Cloud services is continuing to be influenced by the consumer space which is leading to the concepts of verifiability, accountability, data sovereignty, and confidentiality becoming table stakes.
  2. Globalization and regulation are going to accelerate the adoption of these technologies and patterns as they will ultimately become necessary to meet regulatory expectations.
  3. Increasingly verifiable data structures, cryptography, and hardware security capabilities are being used to make all of this possible.
  4. These trends will lead to the democratization of compliance to the many regulatory schemes that exist in the world.

I believe when we look back, these trends will have significantly changed the way we build systems and a new generation of businesses will emerge enabling these shifts to take place.

Safes and Transparency

Lately, I have been thinking about the history of defensive security technology. One of the purest examples here can be found in safes and vaults. The core purpose of a safe is obvious, to make it cost-prohibitive for an attacker to gain access to whatever is inside without being detected.

With that said, the topic is a lot more nuanced than it seems on the surface. If we look at a safe used by a typical community bank in the 1800s, one of the things you will notice is that they often have ornate decorations on their exteriors, beautifully designed locking mechanisms and their locking mechanisms are covered by specific patents. These traits were clearly designed to signal something to the visitors of the bank, namely that they use the latest technology to keep your valuables safe.

Beyond the messaging buried in the design, these safes were also designed to mitigate specific threats, for example, In the mid-1800s it was common for attackers to steal safes, use explosives to open them and to kidnap those that had access to the secrets necessary to open a safe, or those near and dear to them. 

In response to this reality, safe manufacturers started to use materials like manganese to manufacture safes, making the walls very thick and as a result very heavy (often 3 tons or more!), rounding corners, and using locking cylinder-shaped doors in combination to make theft or the use of explosives no longer interesting vectors for an attack.

These changes, combined with artful customizations also provided a way for banks to ensure that sophisticated thieves could not replace a safe in order to delay the detection time and have a safer getaway.

They also started incorporating time locks, to make it so if someone was kidnapped, they would still not be able to open the safe outside core business hours, essentially enabling the creation of a fully disclosed ledger of all goods stored in or withdrawn from the safe.

A famous example here is from 1876 in the robbery of the Great Northfield Minnesota Bank by Jesse James and the Cole Younger gang, it was foiled due to a safe with these design characteristics.

As I think about the parallels in modern technology, I can not help but to come back to a post I did this last year titled “An Evolution of Security Thinking’, in particular how we have gone from security as something you added after the fact to one where it is built into a system from the get-go. Moreover, it seems that these safes may also represent one fo the first examples of transparency being applied as a technique used to dissuade an attacker.

If a safe has no tumbler on the outside, what good would it do to kidnap the bank manager? As a result, the attacker is forced to attempt their theft during business hours when the bank was busy and they would have a larger chance of getting caught.

If it is obvious a safe has 12” thick walls and weighs in at over 3 tons, then stealing the safe at night, or using explosives to open the safe, given the skills and resources of the attacker, is no longer a viable path of compromise either. As a result, forcing the assailant to attack the bank during the day, when the vault may already be opened.

The safe manufactures, by making their designs, and mitigations clear, were attempting to dissuade attackers from even attempting their attack. This is not materially different from how today we are applying the concepts of cryptographic transparency as a tool to mitigate other attacks.

In short, transparent systems are essentially the antithesis of security by obscurity. While designing a system to be cryptographically verifiable does not necessarily require the contents of that system to be known, just as the safe design doesn’t require the contents of the safe itself to be known, the use of these patterns makes it possible to intelligently reason about the security and integrity of the system.

Just a thought…..

P.S. Thanks to Fotis Loukos and Yael Grauer for providing feedback on this post.