Category Archives: Certificates

Effortless Certificate Lifecycle Management for S/MIME

In September 2023, the SMIME Baseline Requirements (BRs) officially became a requirement for Certificate Authorities (CAs) issuing S/MIME certificates (for more details, visit CA/Browser Forum S/MIME BRs).

The definition of these BRs served two main purposes. Firstly, they established a standard profile for CAs to follow when issuing S/MIME certificates. Secondly, they detailed the necessary steps for validating each certificate, ensuring a consistent level of validation was performed by each CA.

One of the new validation methods introduced permits mail server operators to verify a user’s control over their mailbox. Considering that these services have ownership and control over the email addresses, it seems only logical for them to be able to do domain control verification on behalf of their users since they could bypass any individual domain control challenge anyway. This approach resembles the HTTP-01 validation used in ACME (RFC 8555), where the server effectively ‘stands in’ for the user, just as a website does for its domain.

Another new validation method involves delegating the verification of email addresses through domain control, using any approved TLS domain control methods. Though all domain control methods are allowed for in TLS certificates as supported its easiest to think of the DNS-01 method in ACME here. Again the idea here is straightforward: if someone can modify a domain’s TXT record, they can also change MX records or other DNS settings. So, giving them this authority suggests they should reasonably be able to handle certificate issuance.

Note: If you have concerns about these two realities, it’s a good idea to take a few steps. First, ensure that you trust everyone who administers your DNS and make sure it is securely locked down. 

To control the issuance of S/MIME certificates and prevent unauthorized issuance, the Certification Authority Authorization (CAA) record can be used. Originally developed for TLS, its recently been enhanced to include S/MIME (Read more about CAA and S/MIME).

Here’s how you can create a CAA record for S/MIME: Suppose an organization, let’s call it ‘ExampleCo’, decides to permit only a specific CA, ‘ExampleCA’, to issue S/MIME certificates for its domain ‘example.com’. The CAA record in their DNS would look like this:

example.com. IN CAA 0 smimeemail "ExampleCA.com"

This configuration ensures that only ‘ExampleCA.com’ can issue S/MIME certificates for ‘example.com’, significantly bolstering the organization’s digital security.

If you wanted to stop any CA from issuing a S/MIME certificate you would create a record that looks like this: 

example.com. IN CAA 0 issuemail ";"

Another new concept introduced in this round of changes is a new concept called an account identifier in the latest CAA specification. This feature allows a CA to link the authorization to issue certificates to a specific account within their system. For instance:

example.com. IN CAA 0 issue "ca-example.com; account=12345"

This means that ‘ca-example.com’ can issue certificates for ‘example.com’, but only under the account number 12345.

This opens up interesting possibilities, such as delegating certificate management for S/MIME or CDNs to third parties. Imagine a scenario where a browser plugin, is produced and managed by a SaaS on behalf of the organization deploying S/MIME. This plug-in takes care of the initial enrollment, certificate lifecycle management, and S/MIME implementation acting as a sort of S/MIME CDN.

This new capability, merging third-party delegation with specific account control, was not feasible until now. It represents a new way for organizations to outsource the acquisition and management of S/MIME certificates, simplifying processes for both end-users and the organizations themselves.

To the best of my knowledge, no one is using this approach yet, and although there is no requirement yet to enforce CAA for SMIME it is in the works. Regardless the RFC has been standardized for a few months now but despite that, I bet that CAs that were issuing S/MIME certificates before this new CAA RFC was released are not respecting the CAA record yet even though they should be. If you are a security researcher and have spare time that’s probably a worthwhile area to poke around 😉

The Rise of Key Transparency and Its Potential Future in Email Security

Key Transparency has slowly become a crucial part of providing truly secure end-to-end encrypted messaging. Don’t believe me? The two largest providers of messaging services, Apple and Facebook (along with their WhatsApp service), have openly adopted it, and I am hopeful that Google, one of its early advocates, will follow suit.

At the same time, we are on the precipice of interoperable group messaging as Messaging Layer Security (MLS) was recently standardized. Its contributors included representatives from employees of the mentioned services and more, which suggests they may adopt it eventually. What does this have to do with Key Transparency? It acknowledges the need for secure, privacy-preserving key discovery through its inclusion of Key Transparency in its architecture.

It’s also noteworthy to see that Apple has agreed to support RCS, Android’s messaging protocol. While there is no public hint of this yet, it’s possible that since they have positioned themselves as privacy champions over the last decade frequently toting their end-to-end encryption, we may see them push for MLS to be adopted within RCS, which could net the world its first interoperable cross-network messaging with end-to-end encryption, and that would need a key discovery mechanism.

In that spirit, recently the Internet Engineering Task Force (IETF) has established a Working Group on Key Transparency, and based on the participation in that group, it seems likely we will see some standardization around how to do Key Transparency in the future.

What’s Next for Key Transparency Adoption Then?

I suspect the focus now shifts to S/MIME, a standard for public key encryption and signing of emails. Why? Well, over the last several years, the CA/Browser Forum adopted Baseline Requirements (BRs) for S/MIME to help facilitate uniform and interoperable S/MIME, and those became effective on September 1, 2023 – this means CAs that issue these certificates will need to conform to those new standards.

At the same time, both Google and Microsoft have made strides in their implementations of S/MIME for their webmail offerings.

In short, despite my reservations about S/MIME due to its inability to address certain security challenges (such as metadata confidentiality, etc), it looks like it’s witnessing a resurgence, particularly fueled by government contracts. But does it deliver on the promise today? In some narrow use cases like mail signing or closed ecosystem deployments of encrypted mail where all participants are part of the same deployment, it is probably fair to say yes.

With that said, mail is largely about interoperable communications, and for that to work with encrypted S/MIME, we will need to establish a standard way for organizations and end-users to discover the right keys to use with a recipient outside of their organization. This is where Key Transparency would fit in.

Key Transparency and S/MIME

Today, it is technically possible for two users to exchange certificates via S/MIME, enabling them to communicate through encrypted emails. However, the process is quite awkward and non-intuitive. How does it work? You either provide the certificate out of band to those in the mail exchange, and they add it to their contact, or some user agents automatically use the keys associated with S/MIME signatures from your contacts to populate the recipient’s keys.

This approach is not ideal for several reasons beyond usability. For instance, I regularly read emails across three devices, and the private keys used for signing may not be the same on each device. Since consistent signing across devices isn’t required, if I send you an email from my phone and then you send me an encrypted message that I try to open on my desktop, it won’t open.

Similarly, if I roll over my key to a new one because it was compromised or lost, we would need to go through this certificate distribution workflow again. While Key Transparency doesn’t solve all the S/MIME-related problems, it does provide a way to discover keys without the cumbersome process, and at the same time, it allows recipients to know all of my active and published certificates, not just the last one they saw.

One of the common naive solutions to this problem is to have a public directory of keys like what was used for PGP. However, such an approach often becomes a directory for spammers. Beyond that, you have the problem of discovering which directory to use with which certificate. The above Key Transparency implementations are all inspired by the CONIKS work, which has an answer to this through the use of a Verifiable Random Function (VRF). The use of the VRF in CONIKS keeps users’ email addresses (or other identifiers) private. When a user queries the directory for a key, the VRF is used to generate a unique, deterministic output for each input (i.e., the user’s email). This output is known only to the directory and the user, preserving privacy.

The generic identifier-based approach in Key Transparency means it can neatly address the issue of S/MIME certificate discovery. The question then becomes, how does the sender discover the Key Transparency server?

Key Transparency Service Discovery

The answer to that question probably involves DNS resource records (RRs). We use DNS every day to connect domain names with IP addresses. It also helps us find services linked to a domain. For instance, this is how your email server is located. DNS has a general tool, known as an SRV record, which is designed to find other services. This tool would work well for discovering the services we’re discussing.

_sm._keytransparency._https.example.com. 3600 IN SRV 10 5 443 sm-kt.example.com.

In this example, _sm the identifier is placed before _keytransparency. and _https shows that this SRV record is specifically for a Key Transparency service for Secure Messaging. This allows someone to ask DNS for a S/MIME-specific Key Transparency service. It also means we can add other types of identifiers later, allowing for the discovery of various KT services for the same domain.

Conclusion

While S/MIME faces many challenges, such as key roaming, message re-encrypting on key rollover, and cipher suite discoverability, before it becomes easy to use and widely adopted—not to mention whether major mail services will invest enough in this technology to make it work—there’s potential for a directory based on Key Transparency if they do.

Hopefully, the adoption of Key Transparency will happen if this investment in S/MIME continues, as it’s the only large-scale discovery service for user keys we’ve seen in practice. Unlike other alternatives, it’s both privacy-respecting and transparently verifiable, which are important qualities in today’s world. Only time will tell, though.

To err is human, to forgive is divine

Every service should strive to provide perfect availability, the reality is that it’s not possible to be perfect. Mistakes happen, it’s how you deal with them that is important.

Successfully dealing with availability issues requires planning, and when dealing with a client-server solution, it requires both parties to make improvements.

In the context of ACME today the large majority of clients have no failover or logic. This means if the enrollment fails due to connectivity issues to the specified CA, the CA has an outage, or the CA suspends operations for one reason or another the enrollment will fail.

This is a problem for any service protected with TLS, which is basically every service, that wants to have a highly available service. One of the ways services deal with this is to proactively acquire two certificates for every endpoint, this is viable, but I would argue this is not the right solution.

The right solution is to not rely on a single CA and instead failover between many CAs that are capable of servicing your needs. This way if any single CA fails you are fine, you can just keep chugging along.

That is not sufficient to address this risk though. Not all certificates have the same level of device trust. Sometimes clients make bad assumptions and trust specific CA hierarchies assuming these configurations are static, even when they are not.

To help mitigate this behavior clients should implement a round-robin or random CA selection logic so that subsequent renewals will hit different CAs. This will force clients to make sure they work with any of your chosen CAs. This way you won’t find yourself breaking apps that make those bad assumptions when your CA fails.

Caddy Server already implements both of these strategies as I understand it but every ACME client should be doing the same thing.

A Boy Scout is always prepared

My father always says it’s not a problem to make a mistake, what is important is how you deal with it. 

The same thing is true when it comes to WebPKI CAs, broadly the incident response process used in this ecosystem could be categorized as Blameless Post Mortem. The focus is on what happened, what contributed to it, and what was done to address the issue and not on fault.

A few years ago a number of large CAs had to do millions of revocations, in all of the cases I am thinking the required deadline for those revocations was 5 days. Revoking a large number of certificates that are not directly obvious but if you’re a CA who has done any moderate level of planning it’s something you should be up for.

The thing is that doing so can cause harm, for example, the issue that necessitates the revocation might be incredibly subtle and not security-impacting. Nonetheless, the requirement is what the requirement is — the certificate needs to be revoked.

The question then becomes how can you meet that timeline objective without creating an unnecessary outage for customers? If you defy the rules you risk being distrusted, if you act blindly you could take down your customer’s services.

The question then becomes how do you contact millions of customers and give them enough time to replace their certificates without an outage with these constraints?

Like most scale problems the answer is automation, in the context of certificate lifecycle management that means an extension to the ACME protocol. To that end, there is now a draft for something called “ACME Renewal Information” which when implemented by CAs and ACME clients will enable a CA to signal that there may be a need to replace their certificate earlier than expected.

The basic idea with this proposal is that the CA will make available hints on when it would like certificates to be updated and the client will periodically check this information and use it to guide its renewal behavior.

To be clear, this is just a hint, a CA might be providing this hint just to smooth out the load, but there is no mandate to rely on the hint. With that said I do hope that all major ACME clients implement this standard and respect it by default because it will make the WebPKI a lot less fragile.

Baseline requirements are just that a baseline

I’ll start by saying this post is just a collection of personal thoughts and not a statement from my employer, nor does it reflect anyone’s opinions other than my own.

A common problem in the WebPKI is that CAs forget why they exist. No one cares about their business objectives. They exist to serve the public interest, more explicitly they exist to help the web solve the TOFU problem for domain control verification.

They exist because user agents (usually browsers) made the decision to delegate the TOFU problem to certificate authorities. To understand the browser’s motivation you simply need to look at the name “user agent” to understand that they directly serve the user.

These user agents used to meet individually with each and every one of these CAs to discuss the user agent requirements for CAs but ultimately decided to do this in a more collaborative way by participating in the CA/Browser Forum. 

Simply put, this organization would very likley stop existing if the user agents stopped participating and did not rely on the documents that come from this organization.

We know this to be true because of the voting structure of the forum and because the forum does not produce documents that govern the user agents, it produces documents that govern the practices of CAs.

To understand the nature of the CA/Browser program you just have to look at the name of the first and most important document they produced — the Server Certificate Baseline Requirements.

base¡line

noun

     a minimum or starting point used for comparisons.

That’s right, it sets the minimum bar that a user agent should consider when trusting a certificate authority.

Far too often compliance programs end up driving the roadmap and operational practices of CAs and it stops being about what is right and becomes what is minimally required.

This leads to all kinds of spectacular failures, including basic failures in communication:

Instead of this compliance-focused mindset, CAs must be focused on why they exist, who they serve, and what is at risk if they mess things up.

I would argue that every major failure in the WebPKI has stemmed from forgetting about these simple questions.

TOFU and the Web

I’ll start by saying this post is just a collection of personal thoughts and not a statement from my employer, nor does it reflect anyone’s opinions other than my own.

For the uninitiated, TOFU is an acronym for Trust On First Use. The basic idea is that the user makes the trust decision associated with a communication channel on the first visit.

To understand the concept here, you need to know what we mean by “communication channel” and what we “trust” them for.

Let’s start with what we mean by the “communication channel”. In the context of the web, for the most part, a user agent (often a browser) initiates communication to a service located at a fully qualified domain name. This is usually done using the Transport Layer Security (TLS) protocol. 

Next, let’s look at what “trust decision” is being made. Notice we don’t have an application yet, we have just established a session that an application and a service can use to exchange information. As a result, the trust decision we are making is:

Did my traffic end up at a service associated with the aforementioned fully qualified domain name?

The naive way to answer the question is to ask that question every time a user visits the service. In fact, some browsers support this model explicitly:

This is the moral equivalent of saying “do you feel lucky?” because the user has no way to answer this question.

It is actually worse than that, the few ways you can answer that question require the participation of the service being authenticated. That means any solution has to potentially scale up to the 5 billion users on the internet

Since each of these users has varying degrees of technical prowess and the service in question has a limited amount of time and resources; doing this for every user interactivity would be impractical.

To give this some modern color, Signal solves this problem by having the users in a conversation verify out of band they are talking to the right person. Almost no one does this of course and just begins chatting without going through this dance.

The gray hairs of the internet decided to solve this problem by delegating this trust decision to entities known as Certificate Authorities (CAs). They indirectly act as a middleman for the session establishment, they do this by issuing the service a credential it can use to prove that someone did this verification for them. 

These CAs do this verification by having the service perform some authenticatable action that only someone that controls the fully qualified domain name in question could complete This whole dance is basically delegated TOFU of control of the fully qualified domain name.

Over the last 28 years, this delegation has taken us from no HTTPS to near-ubiquitous HTTPS.

This is of course fantastic but it does beg the question what has this journey taught us and what might we change moving forward?

For one right now, if we believe this table, there are about 89 organizations in the world that are approved Certificate Authorities. But the top 5 of those CAs issue 99% of all certificates in use on the web.

That’s right 96% of the CAs that can issue certificates for the web could disappear tomorrow and most people would not notice.

What concerns me is that running a CA is hard, expensive, and has materially different operating constraints than other services. This combined with the love nation-state attackers have for these services has led to numerous colorful events over the years 1,2,3,4,5,6.

To be clear I am not making the case that those CAs should be removed, just making it clear that the web is carrying a much larger surface area than it strictly needs to deliver on its original design goal. 

That takes us back to the question of what lessons the last 28 years have taught us and what might we change moving forward. The answer here is likely buried in the adage of having one joint and keeping it well-oiled is key. 

The journey from 0% of the web being protected with HTTPS to nearly 100% has been one of simplification and automation. There is plenty of opportunity for us to do more of that and doing so will be key to the survivability of encryption on the web, some problems we might want to see in addressed that spirit include:

  1. Too many single points of failure in the WebPKI. If any of those top 5 CAs were to fail we would experience a massive failure on the web. For us to address this we need to standardize on a single certificate enrollment protocol, this would make the CAs plug-and-play replacements for each other. We already have a de-facto standard RFC 8555 (ACME) which is responsible for around 70% of all certificate issuance. We should just embrace that and make it official. Once we see sufficient ACME adoption we need the ACME clients to fail over and round-robin across all the associated CAs. This will help ensure clients are able to survive any single CA failure.
  1. We need the WebPKI to be less fragile. There are lots of examples of WebPKI fragility, some are:
  • Clients sometimes get hard coded to expect a single issuing CA. This is a very bad practice, one some CAs have already started to dissuade by randomly selecting issuing CAs.
  • Reliance on very long-lived root certificates instead of very frequent root updates. This is also thankfully starting to change but solving this problem will take us a very long time thanks to root programs that do not continually manage what roots are trusted in deployed systems.
  • The inability of the web to survive CA mistakes and potential security issues without creating outages. There is also work being done here in an extension to ACME called ARI to help enable the web to seamlessly renew certificates in such cases.
  1. Too many CAs with too broad permissions. Since most CAs are not necessary for the web to operate but may still have a legitimate need to exist we should leverage usage and name constraints in root trust more. This would go a long way to both reduce the value of a compromise of these CA long tail CAs to an attacker as well as reduce the exposure to the web as a whole to the practices of these CAs. We should also come back and revisit the need for CAs to keep those permissions periodically.
  1. Over-reliance on manual assessments by unqualified auditors and security professionals. This introduces a number of issues, some of which include:
  1. Root programs are too slow to respond to bad or questionable actors. Suspension of a CA is not-done and total distrust can take months or longer. There are a lot of politics involved here but equally important is the tooling to remove CAs, both procedurally and technically. In these things are simply not “well oiled”. They need to be made far more agile so that this long tail can be more effectively managed.

So what can you do about all of this? Well if you are a root program you should be looking at how you help address the above issues through the way you manage that program.

If you are an end user? Well, the answer there is easy — adopt ACME-based certificate lifecycle management, keep an eye on Certificate Transparency logs for certificates issued by that long tail of CAs and consider specifying CAA restrictions that limit issuance to a small number of CAs.

User-managed smart cards are an oxymoron

In an earlier post, I talked about what it is like to get an EV Code Signing Certificate in 2022 but what I didn’t talk about in that post was token management.

The first thing is that most smart cards implement a proprietary card edge, for example, the SafeNet 5110 is probably the most popular PKI-based smart card token. Since this token is totally proprietary you need to install what is called the SafeNet Authentication Client (SAC) before you can do much of anything with this token.

Most CAs will mail you an unprovisioned token, and tell you to install this client which contains amongst other things a PKCS#11 library that can work with it. The most important part of this package is actually the administration client though.

Without this, you can not initialize the token (roughly the equivalent of formatting it), set or change the passwords for using it, unblock it, or delete certificates from it (necessary as they have limited space).

What is important to understand is that these smart cards have their own administration model, in essence, there is a root user (the Security Officer or SO) and a regular user (that’s the person doing the code signing).

To make things easier for the recipient of a token these tokens are shipped with default secrets, at a minimum that involves the SO and user password (often all zeros or some other well-known sequence of numbers). For example, the default SO password for the SafeNet 5100 is a sequence of 48 zeros. 

While the SAC client will generate a random value for the SO password if you want it to, if you do not know what you are doing, it’s actually pretty natural to let it keep re-using the all zeros secret. On the other hand, if you let it assign a random value and do not secure it in some way so it is not lost if you type your password wrong 5 times the token is bricked.

This leaves us with a spectrum of choices that starts with a charade of protection and ends with something that would fail to meet the most basic business continuity expectations.

One might argue that anyone who wants to use a smart card would be savvy enough to know the above and make sure to use the appropriate practices. I personally find that hard to believe. If you do a search on the web right now I bet the only thing you will find is a few screenshots of how to get the token to the point it can have a key generated on it.

There are some providers who have built out remote signing capabilities using proprietary REST APIs and tooling, these are arguably a better choice than using a smart card but they also tend not to work very well or be very reliable. Not exactly what you want in a process that can gate your releases.

In summary, today, even when you manage to get a smart card enrollment to work remotely, there is a very good chance that you are not managing the smart card lifecycle and associate secretes effectively.

How to keep bad actors out in open ecosystems

There is a class of problems in information security that are intractable. This is often because they have conflicting non-negotiable requirements. 

A good example of this is what I like to call the “re-entry” problem. For instance, let’s say you operated a source control service, let’s call it “SourceHub”. To increase adoption you need “SourceHub” to be quick and easy for anyone to join and get up and running. 

But some users are malicious and will do nefarious things with “SourceHub” which means that you may need to kick them off and keep them off of your service in a durable way.

These two requirements are in direct conflict, the first essentially requires anonymous self-service registration and the second requires strong, unique identification.

The requirement of strong unique identification might seem straightforward on the surface but that is far from the case. For example, in my small social circle, there are four “Natallia’s” who are often are at the same gatherings, everyone must qualify which one we are talking to at these events. I also used to own ryanhurst.com but gave it up because of the volume of spam I would get from fans of Ryan Hurst the actor because spam filters would fail to categorize this unique mail as spam due to the nature of its origin.

Some might say this problem gets easier when dealing with businesses but unfortunately, that is not the case. Take for example the concept of legal identity in HTTPS certificates — we know that business names are not globally unique, they are not even unique within a country which often makes the use of these business names as an identifier useless. 

We also know that the financial burden to establish a “legal business” is very low. For example in Kentucky, it costs $40 to open a business. The other argument I often hear is that despite the low cost of establishing the business the time involved is just too much for an attacker to consider.  The problem with this argument is the registration form takes minutes to fill out and if you toss in an extra $40 the turnaround time goes from under 3 weeks to under 2 days — not exactly a big delay when looking at financially incentified attackers.

To put this barrier in the context of a real-world problem let’s look at Authenticode signing certificates. A basic organizationally validated Authenticode code signing certificate costs around $59, With this certificate and that business registration, you can get whatever business name and application name you want to show in the install prompt in Windows.

This sets the bar to re-enter this ecosystem once evicted to around $140 dollars and a few days of waiting.

But what about Authenticode EV code signing? By using an EV code signing certificate you get to start with some Microsoft Smart Screen reputation from the get-go – this certainly helps grease the skids for getting your application installed so users don’t need to see a warning.


But does this reduce the re-entry problem further? Well, the cost for an EV code signing certificate is around $219 which does take the financial burden for the attacker to about $300. That is true at least for the first time – about $50 of that first tome price goes to a smart card like the SafeNet 5110cc or Yubikey 5.  Since the same smart card can be used for multiple certificates that cost goes down to $250 per re-entry. It is fair to say the complication of using a smart card for key management also slows the time it takes to get the first certificate, this gets the timeline from incorporation to having an EV code signing certificate in hand to about 1.5 weeks.

These things do represent a re-entry hurdle, but when you consider that effective Zero Day vulnerabilities can net millions of dollars I would argue not a meaningful one. Especially when you consider the attacker is not going to use their own money anyway.

You can also argue that it offers some rate-limiting value to the acquisition pipeline but since there are so many CAs capable of issuing these certificates you could register many companies, somewhat like Special Purpose Acquisition Companies (SPAC) in the stock market, so that when the right opportunity exists to use these certificates it’s ready and waiting.

This hurdle also comes at the expense of adoption of code signing. This of course begs the question of was all that hassle was worth it?

Usually the argument made here is that since the company registration took place we can at least find the attacker at a later date right? Actually no, very few (if any) of these company registrations verify the address of the applicant.

As I stated, in the beginning, this problem isn’t specific to code signing but in systems like code signing where the use of the credential has been separated from the associated usage of the credential, it becomes much harder to manage this risk.

To keep this code signing example going let’s look at the Apple Store. They do code-signing and use certificates that are quite similar to EV code-signing certificates. What is different is that Apple handles the entire flow of entity verification, binary analysis, manual review of the submission, key management, and signing. They do all of these things while taking into consideration the relationship of each entity and by considering the entire history available to them.  This approach gives them a lot more information than you would have if you did each of these things in isolation from each other. 

While there are no silver bullets when it comes to problems like this getting the abstractions at the right level does give you a lot more to work with when trying to defend from these attacks.

What would it look like to go back to first principles when it comes to root store management in 2022?

In the early 2000s, Microsoft mandated that all CAs in its root program would need to be audited for conformity to WebTrust For CAs (WebTrust), It was the first root program to do so and I was the root program manager that rolled out that change. 

For those who are interested Web Trust for CAs is an audit that looks back at a period of past behavior to assess conformity to a set of criteria specific to certificate authorities. Only approved auditors are allowed to officially perform these assessments.

The decision to require the WebTrust audit was pretty simple, there was literally no other independent standard that attempted to assess the operational readiness and security of certificate authorities, and as far as such standards went it was more good than it was bad.

The other root programs didn’t have objective criteria, some operated on a pay-to-play model with virtually no requirements, while others simply wanted a management assertion of conformity to a small list of requirements and a contract signed. 

The idea of working with an independent group that had a vested interest in creating a baseline standard for the operation of CAs, that would be able to evolve over time, seemed like a no-brainer given how poor and inconsistent CA practices were at the time.

Nearly two decades later the CA/Browser Forum is where the AICPA and others go to discuss how the audit criteria should evolve over time. It’s objectively a success in that today there is quite a bit of uniformity in the operational practices that CAs have and its existence has led to many improvements to the WebPKI.

With that said, if we go back to first principles today I think I would take a different approach. I would design a root program that was heavily based on technical security controls, and behaviors that can be verified externally continuously.

If we’re going first principles then let’s take a step back at what responsibility a CA has on the internet. A TLS certificate does one thing fundamentally, it binds a domain name to a public key. It does this so that user agents (browsers) can verify that the server on the other end can verify that they are talking to the right server.

This user agent believes this certificate is telling the truth because the browser operators will remove CAs that demonstrate they are not trustworthy. 

Today I would guess 60-70% of the certificates on the web are issued via the ACME (RFC 8555) protocol. this protocol has a handful of methods it allows a requestor to use to prove they control the domain name (for example DNS-01, HTTP-01, and TLS-ALPN-02).

What this means is if ACME is the only way you can get a certificate from a CA, it also means that it is possible to externally test how the CA performs domain control verification. 

There has been another innovation in this space, we now have Certificate Transparency, this is a community of append-only ledgers that in union contain all of the WebPKI certificates. If a certificate does not get logged to the CT ledgers then users with major browsers (Safari, Chrome, Edge, etc) will see an error when the user visits the associated site.

This now gets us a list of all the things, with this list we can programmatically review 100% of the certificate issuance to ensure that they meet the externally visible technical requirements. This already happens today in the WebPKI thanks to the excellent Zlint.

What about how the CAs key material is protected? I love a good HSM too! Well, some HSMs already support attestations about the keys they are protecting, for example, Google Cloud, and Amazon Web Services use Marvel HSMs in their cloud offering and those devices offer hardware attestations about how a given key is protected.

What about the software that makes up the service? Well, some languages make naturally reproducible builds, for example, Go. This means that you could conceptually run CA software on hardware capable of making attestations about what it is running and from that attestation and if that software was open source you could audit the behavior of that software for security and conformity criteria.

You could even go so far as incorporating these attestations into certificate transparency pre-certificates along with how the domain control verification was performed for the “final” certificate so these things could be audited on a per certificate basis.

You could take the additional step of schematizing all of the audit logs that each of these CAs is required to produce and require them to make them public and verifiable via something like an append-only ledger.

We could even go so far as to eliminate the need for revocation checking by adopting very short-lived certificates as a mandate.

Now don’t get me wrong, this isn’t a complete list, and I doubt there is any set of technical controls that would totally eliminate the need for onsite independent visits but I would argue that they could be more frequent or technically deeper if as an industry we could asses much of the conformity of CAs in real-time and track the changes to their infrastructure.

This sounds like a big lift, after all, there is a top of CAs that exist in the WebPKI, the reality is that the large majority of these don’t focus on TLS as demonstrated by the fact that 5 CAs issue 98.59% of all TLS certificates. This means that you wouldn’t need to get many entities to embrace this new model to cover most of the internet.

If you had enough participants this new root program could be very agile for this new root program. After a short period of initial automated testing and a signed letter of conformity from an auditor, you could automate the inclusion processes. Should the continental monitoring find an issue you could automate the reporting to the CA and even automate the distrust of the CA in some cases.

This new WebPKI would need to exist in parallel to the old one for a long time, in particular, the existence of all of the embedded devices without reasonable firmware update would hold back its total adoption as websites need certificates that work everywhere but you can see a path to an agile, continually verified web PKI that leveraged more of these technical controls rather than all of the manual and procedural verification that is involved today.

I want to be clear, the above is a thought exercise, I am not aware of anyone planning on doing anything like the above, but I do think after 20 years it is entirely reasonable to rethink the topic of what the WebPKI looks like and we don’t need to rest on old patterns “just because that’s how it is done” — we have come a long distance in the last couple of decades and it’s worth looking at back these problems now and again.

WebPKI, TLS, cross-signs, device compatibility, and TLS record size.

Both the Chrome and Mozilla root program have signaled the intent to substantially shorten the time we rely on roots in the WebPKI. I believe this to be a good objective but I am struggling to get my head around the viability and implications of the change.

In this post, I wanted to capture my inner dialog as I try to do just that 🙂

I figure a good place to start when exploring this direction is why this change is a good idea. The simplest answer to this question is probably that root certificates are really just “key bags” — by that I mean they are just a convenient way to distribute asymmetric keys to clients. 

Asymmetric keys have an effective lifetime, this means the security properties they offer start to decay from the moment the key is created. This is because the longer the key exists the more time an attacker has had to guess the corresponding private key from its public key, or worse compromise the private key in some way. For this reason, there are numerous sources of guidance on usage periods for asymmetric keys, for example, NIST guidance from 2020 says that a 2048 key is usable between 2019 and 2030.

There is also the question of ecosystem agility to consider. Alexander Pope once said To Err is Human, to forgive divine. This may actually be the most important quote when looking at computer security. After all, security practitioners know that all systems will have security breaches, this is why mature organizations focus so much on detection and response. I believe the same thing is needed for ecosystem management, the corollary, in this case, is how quickly you can respond to unexpected changes in the ecosystem.

Basically having short-lived root keys is good for security and helps ensure the ecosystem does not become calcified and overly dependent on very old keys continuing to exist by forcing them to change regularly.

With that, all said, if it were easy we would already be doing it! So what are the challenges that make it hard to get to this ideal? One of the hairiest is the topic of the Internet of Things (IOT). Though I would be the first to admit there is no one size fits all answer here, broadly these devices should not use the WebPKI.

In 2022, the market for the Internet of Things is expected to grow 18% to 14.4 billion active connections. It is expected that by 2025, as supply constraints ease and growth further accelerates, there will be approximately 27 billion connected IoT devices. 

IOT-Analytics.com

A big reason for this is that these devices last a very long time compared to their mobile phone and desktop counterparts. They also, unfortunately, tend not to have managed root stores and if they do, they do it as part of firmware updates and have limited attach rates of these updates. To make things worse these devices take crude simplifying assumptions around what cryptographic algorithms are supported and what root CAs will be used by servers in the future.

But for most IoT applications, like those enabling the smart city, the device life cycle is 10 to 20 years or more. For instance, it doesn’t make sense to replace the wireless module in smart streetlights every few years.

Ingenu

A good topical example of the consequences here might be the payment industry making a decision in the 90s to adopt a single WebPKI CA  (a VeriSign-owned and operated root certificate) in payment terminals without having a strategy for updating the device’s root stores.  These terminals communicated to web servers that were processing payments. In short, the servers had to use certificates from this one WebPKI Root CA or no payment terminals could reach them.

This design decision was made during a time when SHA-1 was considered “secure”. The thing is cryptographic attacks are always evolving, and since 2005 SHA-1 has not been considered secure. As a result, browsers moved to prevent the use of this algorithm. 

This meant that one of two things would happen, either browsers would break payment terminals by preventing WebPKI CAs from using this algorithm, or payment terminals’ lack of an update strategy would put the internet at risk by slowing the migration from SHA-1. Unfortunately, the answer was the latter.

In short, when you have no update story for roots and you rely on the WebPKI you are essentially putting both your product and the internet at risk. In this case, while a root and firmware update story should have existed regardless, the payment industry should have had a dedicated private PKI for these use cases.

OK, so what does this have to do with moving to a shorter root validity period in Browser root programs? Well, when a TLS server chooses what certificate to present to a client it doesn’t know much more than the IP address of the client. This means it can’t selectively choose a TLS certificate based on it being an IOT device, a phone running an old version of a browser, or a desktop browser.

This is where the concept of “root ubiquity” and what those in the industry sometimes called “root baking”. Some root programs process requests for new root inclusion very quickly, maybe within a year your root can become a member of their program but that isn’t enough.  You need the very large majority of the devices that rely on that root program to pick up the new root before the devices will trust it.

In the case of Microsoft Windows, the distribution of a root certificate happens via a feature called AutoRoot Update. The uptake for consumer devices of a new root is very high as this is seldom turned off and the URL that is used to serve this update is seldom blocked. Enterprises and data centers are another matter altogether though. While I do not have any data on what the split is, anecdotally I can say it’s still hit or miss if a root has been distributed in this system as a result of this.

Chrome on the other hand uses a configuration management system for all Chrome that also happens to control what roots are trusted. Again while I have no data I can point out anecdotally it appears this works very well and since chrome updates all browsers automatically they tend to have the latest binaries and settings.

Safari on the other hand manages the roots in the firmware/operating system update. This means if a user does not update their devices’ software the roots will never be present even if you are a member of the root program.

These are just a few examples of some of the root programs CAs have to worry about, and the problems they have to consider.  

What this means is the slowest root program in the WebPKI to accept and distribute roots holds back the adoption of new CAs.  

As an aside, It is worth noting that around 59% of all browser traffic (not including IoT devices) is mobile. This includes a lot of developing country traffic where phones are kept longer and replacement models are often still old models with older software and root stores that are not updated. This is before you get to TVs, printers, medical devices, etc that seldom do forced firmware updates and never manage roots independently from firmware.

As a result of the above, these days I generally tell people that it takes 5-7 years post inclusion to get sufficient ubiquity in a root to be able to rely on it for a popular service as a result.

A CA will typically try to address this problem by acquiring what is known as a cross-sign (see Unobtainium), there are two recent examples of this I can point to. One is the cross-sign for Let’s Encrypt and the other is the cross-sign for Google Trust Services. The problem is most CAs don’t want to help other CAs with cross-signs for obvious reasons. Beyond that increasingly there are fewer and fewer of the “old keys” still in use on the web that is baked into the oldest devices meaning there are not a lot of choices for those cross signs even if you can get one.

Let’s assume for the purpose of this (now long) post that you are able to get a cross sign either from a competitor or because you happen to have custody of older key material that was grandfathered into the root program that has the needed ubiquity.

In the simplest case, you get to a situation where you are asking those that use your certificates to include the two CA certificates in their TLS bundle.  At a minimum, we start to pay a performance penalty for doing this.

As an example consider that each certificate is about 1.5KB in size, by adding this new certificate to the bundle every fresh TLS negotiation will carry this tax.  If we assume a typical chain is normally 3 in length that makes our new total 4.5kb in overhead. It’s not a large figure but if you consider a high-traffic site like Amazon it adds up quickly.

How many purchases are made on Amazon daily? On a daily basis, Amazon ships more than 66,000 orders per hour in the US. About 1.6 million packages are shipped on a daily basis.

capitalcounselor.com

If we assume each of Amazon’s orders equates to a single fresh TLS negotiation (it should be many more than that since many servers power the site) that is a daily increase of 3.6GB of traffic. Now Amazon can deal with that with no problem but it would slow down the experience for users, and potentially cost those users without unlimited internet plans some of their allotted bandwidth. There is also the potential of fragmentation as the TLS packets get larger which increases the latency for the user.

Don’t get me wrong, these are not deal breakers but they are taxes that this cross sign approach represents. 

My fear, and to be clear I’ve not completed the thought process yet, the above story creates a situation where CAs need to provide multiple cross signs to support all the various device combinations that are out there in this new world.

If so this scares me for a few reasons, off the top of my head these include:

  1. It is already hard enough to get a single cross sign doing so multiple times will be that much harder,
  2. It will put new entrants at a disadvantage because they will not have legacy key material to rely on nor the high capital requirements to secure cross signs if commercial terms can even be reached allowing them to get one,
  3. We have spent the last decade making TLS the default and we are close to being able to declare victory on this journey if TLS becomes less reliable we may lose ground on this journey,
  4. It is a sort of regressive taxation on people with older and slower devices that are likely already slow and paying for data on a usage basis.
  5. The additional data required will have a negative impact on Time to First Paint (TTFP) in that this extra data has to be exchanged regardless.

Mom always said don’t complain if you don’t have a proposal to make things better, so I figure I should try to propose some alternatives. Before I do though I want to reiterate that this post isn’t a complaint, instead it’s just a representation of my inner dialog on this topic. 

OK, so what might be a better path for us getting to this world of shorter-lived roots? I guess I see a few problems that lead to the above constraints

  1. Even in the browser ecosystem, we need to see root lists updated dynamically,
  2. Inclusion into a root store should take months for your initial inclusion and later updates should happen in weeks,
  3. Browsers should publish data to help CAs understand how ubiquitous their root distributions are so they can assess if cross signs are even necessary,
  4. There needs to be some kind of public guidance to IoT devices on what they should be doing for the usage of certificates in their devices and this needs to include root management strategies.
  5. IOT devices need to stop using the WebPKI, it is increasingly the Desktop and Browser PKI and anything else will get squashed like a bug in the future if they are not careful 🙂
  6. There should be a Capability and Maturity Model for root programs and associated update mechanisms that can be used to drive change in the existing programs 
  7. CAs should stop using one issuing hierarchy for all cases and divide up the hierarchies into as narrow of slices as possible to reduce the need for one root to be trusted in all scenarios.
  8. Root programs should allow and go so far as to encourage CAs to have more than the 3 (typical) roots they allow now to support CAs in doing that segmentation 
  9. WebPKI root programs should operate two root programs, the legacy one with all of its challenges and the new one focused on agility, automation, and very narrow use cases. Then they should use the existence of that program to drive others to the adoption of those narrower use cases.
  10. And I guess finally we have a chance with the Post Quantium TLS discussions to look at creating an entirely new WebPKI (possibly without X.509!) that is more agile and narrow from the get-go.