Category Archives: Technology

Navigating Public Reporting Obligations in WebPKI and Beyond

Incident response is notoriously challenging, and with the rise in public reporting obligations, the stakes have never been higher. In the WebPKI world, mishandling incidents can severely damage a company’s reputation and revenue, and sometimes even end a business. The Cyber Incident Reporting for Critical Infrastructure Act of 2022 has intensified this pressure, requiring some companies to report significant breaches to CISA within 72 hours. This isn’t just about meeting deadlines. The stakes are high, and the pressure is on. Look at the recent actions of the Cyber Safety Review Board (CSRB), which investigates major cyber incidents much like how plane crashes are scrutinized. The recent case of Entrust’s cascade of incidents in the WebPKI ecosystem, and the scrutiny they have gone under as a result, shows how critical it is to respond professionally, humbly, swiftly, and transparently. The takeaway? If you don’t respond adequately to an incident, someone else might do it for you, and even if not, mishandling can result in things spiraling out of control.

The Complexity of Public Reporting

Public reports attract attention from all sides—customers, investors, regulators, the media, and more. This means your incident response team must be thorough and meticulous, leaving no stone unturned. Balancing transparency with protecting your organization’s image is critical. A well-managed incident can build trust, while a poorly handled one can cause long-term damage.

Public disclosures also potentially come with legal ramifications. Everything must be vetted to ensure compliance and mitigate potential liabilities. With tight timelines like the CISA 72-hour reporting requirement, there’s little room for error. Gathering and verifying information quickly is challenging, especially when the situation is still unfolding. Moreover, public reporting requires seamless coordination between IT, legal, PR, and executive teams. Miscommunication can lead to inconsistencies and errors in the public narrative.

The Role of Blameless Post Mortems

Blameless post-mortems are invaluable. When there’s no fear of blame, team members are more likely to share all relevant details, leading to a clearer understanding of the incident. These post-mortems focus on systemic issues rather than pointing fingers, which helps prevent similar problems in the future. By fostering a learning culture, teams can improve continuously without worrying about punitive actions.

It’s essential to identify the root causes of incidents and ensure they are fixed durably across the entire system. When the same issues happen repeatedly, it indicates that the true root causes were not addressed. Implementing automation and tooling wherever possible is crucial so that you always have the information needed to respond quickly. Incidents that close quickly have minimal impact, whereas those that linger can severely damage a business.

Knowing they won’t be blamed, team members can contribute more calmly and effectively, improving the quality of the response. This approach also encourages thorough documentation, creating valuable resources for future incidents.

Evolving Public Reporting Obligations

New regulations demand greater transparency and accountability, pushing organizations to improve their security practices. With detailed and timely information, organizations can better assess and manage their risks. The added legal and regulatory pressure leads to faster and more comprehensive responses, reducing the time vulnerabilities are left unaddressed. However, these strict timelines and detailed disclosures increase stress on incident response teams, necessitating better support and processes. Additionally, when there are systemic failures in an organization, one incident can lead to others, overwhelming stakeholders and making it challenging to prioritize critical issues.

Importance of a Strong Communication Strategy

Maintaining trust and credibility through transparent and timely communication is essential. Clear messaging prevents misinformation and reduces panic, ensuring stakeholders understand the situation and response efforts. Effective communication can mitigate negative perceptions and protect your brand, even in the face of serious incidents. Proper communication also helps ensure compliance with legal and regulatory requirements, avoiding fines and legal issues. Keeping stakeholders informed supports overall recovery efforts by maintaining engagement and trust.

Implementing Effective Communication Strategies

Preparation is key. Develop a crisis communication plan that outlines roles, responsibilities, and procedures. Scenario planning helps anticipate and prepare for different types of incidents. Speed and accuracy are critical. Provide regular updates as the situation evolves to keep stakeholders informed.

Consistency in messaging is vital. Ensure all communications are aligned across all channels and avoid jargon. Transparency and honesty are crucial—acknowledge the incident and its impact, and explain the steps being taken to address it. Showing empathy for those affected and offering support and resources demonstrates that your organization cares. Keep employees informed about the incident and the organization’s response through regular internal briefings to ensure all teams are aligned and prepared to handle inquiries.

Handling Open Public Dialogues

Involving skilled communicators who understand both the technical and broader implications of incidents is crucial. Coordination between legal and PR teams ensures that messaging is clear and accurate. Implement robust systems to track all public obligations, deadlines, and commitments, with regular audits to ensure compliance and documentation. Prepare for potential delays or issues with contingency plans and pre-drafted communications, and proactively communicate if commitments cannot be met on time.

  • Communication with Major Customers: It often becomes necessary to keep major customers in the loop, providing them with timely updates and reassurances about the steps being taken. Build plans for how to proactively do this successfully.
  • Clear Objectives and Measurable Criteria: Define clear and measurable criteria for what good public responses look like and manage to this. This helps ensure that all communications are effective and meet the required standards.
  • External Expert Review: Retain external experts to review your incidents with a critical eye whenever possible. This helps catch misframing and gaps before you step into a tar pit.
  • Clarity for External Parties: Remember that external parties won’t understand your organizational structure and team dynamics. It’s your responsibility to provide them with the information needed to interpret the report the way you intended.
  • Sign-Off Process: Have a sign-off process for stakeholders, including technical, business, and legal teams, to ensure the report provides the right level of information needed by its readers.
  • Track Commitments and Public Obligations: Track all your commitments and public obligations and respond by any committed dates. If you can’t meet a deadline, let the public know ahead of time.

In the end, humility, transparency, and accountability are what make a successful public report.

Case Study: WoSign’s Non-Recoverable Loss of Trust

Incident: WoSign was caught lying about several aspects of their certificate issuance practices, leading to a total non-recoverable loss of trust from major browsers and ultimately their removal from trusted root stores.

Outcome: The incident led to a complete loss of trust from major browsers.

Impact: This example underscores the importance of transparency and honesty in public reporting, as once trust is lost, it may never be regained.

Case Study: Symantec and the Erosion of Trust

Incident: Symantec, one of the largest Certificate Authorities (CAs), improperly issued numerous certificates, including test certificates for domains not owned by Symantec and certificates for Google domains without proper authorization. Their non-transparent, combative behavior, and unwillingness to identify the true root cause publicly led to their ultimate distrust.

Outcome: This resulted in a significant loss of trust in Symantec’s CA operations. Both Google Chrome and Mozilla Firefox announced plans to distrust Symantec certificates, forcing the company to transition its CA business to DigiCert.

Impact: The incident severely damaged Symantec’s reputation in the WebPKI community and resulted in operational and financial setbacks, leading to the sale of their CA business.

Conclusion

Navigating public reporting obligations in WebPKI and other sectors is undeniably complex and challenging. However, by prioritizing clear, honest communication and involving the right professionals, organizations can effectively manage these complexities. Rigorous tracking of obligations, proactive and transparent communication, and a robust incident response plan are critical. Case studies like those of WoSign and Symantec underscore the importance of transparency and honesty—once trust is lost, it may never be regained.

To maintain trust and protect your brand, develop a crisis communication plan that prioritizes speed, accuracy, and empathy. Consistent, transparent messaging across all channels is vital, and preparing for potential incidents with scenario planning can make all the difference. Remember, how you handle an incident can build or break trust. By learning from past mistakes and focusing on continuous improvement, organizations can navigate public reporting obligations more effectively, ensuring they emerge stronger and more resilient.

Balancing Innovation and Privacy: The Risk of Government Surveillance in the Age of AI

Imagine a world where every conversation, every movement, and every interaction is tracked in real-time by unseen eyes. This isn’t the plot of a dystopian novel—it’s a very real possibility enabled by today’s rapid technological advancements. As we develop and deploy powerful new tools, and maintain the ones that we built the internet on, the line between technology that makes our lives easier and invasive surveillance becomes increasingly blurred.

“In the future everyone will want to be anonymous for 15 minutes”, Banksy, 2011

This growing concern isn’t unfounded. In recent years, the push for censorship and surveillance has become more pronounced, driven by various geopolitical, social, and technological factors. While these measures often are framed around national sovereignty, combating terrorism, and protecting children, the unintended consequences could be far-reaching. Whether this occurs accidentally or purposely, the outcome can be equally invasive and harmful. 

We stand at a point in history where the rapid development and deployment of new technologies, such as Microsoft’s Recall and Apple’s Private Cloud Compute, might inadvertently build the infrastructure that enables governments’ ultimate surveillance goals.

The advent of generative AI, which can extract insights at scale from video, audio, and text, opens the door to mass surveillance more than any other technology in history. These AI advancements enable detailed monitoring and analysis of vast amounts of data, making it easier for governments to track individuals and gain unprecedented insights into personal lives. To be clear, these technologies have amazing potential and are already making many people’s lives easier and making businesses more productive. In some cases, they also represent large and positive trends in privacy protection and should also give us faith in our ability to enable these innovations in a privacy-respecting way.

However, their use raises crucial questions about how we, as system designers, should evolve our philosophies on security and privacy.

A Timeline of Surveillance and Encryption Battles

Let’s take a step back and examine the historical context of government attempts to monitor citizens and the corresponding technological responses.

1990s

  • Introduction of technologies to enable government access, such as the Clipper Chip.
  • Backlash against government surveillance efforts and exposure of security flaws in Clipper Chip.
  • Encryption classified as a munition, leading to strict export control, an effort that held back security advancement for years..

2000s

  • Relaxation of U.S. export controls on encryption products in a tacit acknowledgment of its failure.
  • Expansion of law enforcement access to personal data through legislation like the USA PATRIOT Act.

2010s

  • Major leaks reveal extensive government surveillance programs.
  • Public debates over government backdoors in encryption.
  • Expansion of government surveillance capabilities through new legislation.
  • Proposals for key escrow systems and their criticisms from security experts.

2020s

  • Controversies over commercial companies their data collection and sale practices, and the use of the data by the government against citizens.
  • Legislative proposals and debates around encryption and privacy, such as the EARN IT Act.
  • EU pushes to limit CAs ability to remove EU CAs from their root programs and the mandated trust of EU CAs.
  • Tech companies’ attempts to implement on-device monitoring of your data and the ensuing backlash.
  • Suppression of legitimate discourse about COVID-19, leading to long-term impacts on public trust.
  • Ongoing legislative efforts to expand surveillance capabilities in the EU.

New Technologies and Surveillance Risks

Fast forward to today, and we are witnessing the rise of new technologies designed to make our data more useful. However, in our rush to build out these new capabilities, we might be inadvertently paving the way for government surveillance on an unprecedented scale.

To give this some color, let’s look back at another technological innovation: payphones. Payphones became widespread in the 1930s, and by the 1950s, the FBI under J. Edgar Hoover’s COINTELPRO program was using phone tapping to target civil rights organizations, feminist groups, and others advocating for political change. Regardless of your political leanings, we can all hopefully agree that this was an infringement on civil liberties.

Pay Phone in the Haight, San Francisco, 1967

Similarly, the advent of generative AI, which can extract insights at scale from video, audio, and text, opens the door to mass surveillance more than any other technology in history. These AI advancements enable detailed monitoring and analysis of vast amounts of data, making it easier for governments to track individuals and gain unprecedented insights into personal lives. While these technologies are useful they present a double-edged sword: the potential for more usable technology and improved productivity on one hand, and the risk of pervasive surveillance on the other.

Fast forward to the early 2000s, the USA PATRIOT Act expanded the surveillance powers of U.S. law enforcement agencies, laying the groundwork for extensive data collection practices. These powers eventually led to the Snowden revelations in 2013, which exposed the vast scope of the NSA’s surveillance programs, including the bulk collection of phone metadata and internet communications.

“How would you like this wrapped?” John Jonik, early 2000sClay Bennett, Christian Science Monitor, 2006

As George Santayana famously said, ‘Those who cannot remember the past are condemned to repeat it.’ Technological advancements intended to be used for good can enable detailed, real-time surveillance on a national or even global scale. This dual-use nature underscores the critical need for robust, transparent frameworks to prevent misuse and ensure these technologies align with our fundamental rights and freedoms.

Striking a Balance: Innovation and Vigilance

We do not want, nor can we afford, to be Luddites; this is a world economy, and time and technology move on. Nor do we want to let fear convince us to give up essential liberty to purchase a little temporary safety. Instead, we must strive to strike a balance between innovation and vigilance. This balance involves advocating for robust, transparent, verifiable, and accountable frameworks that ensure the use of technology aligns with our fundamental rights and freedoms.

For example, historically, many security practitioners have pushed back against the use of client-side encryption claiming it is a distraction from real security work because the software or service provider can bypass these protections. However, as we see now, applying these technologies serves as a useful tool for protecting against accidental leakage and for defense in depth more broadly. This change exemplifies the need to continually reassess and adapt our security strategies so they match the actual threat model and not some ideal.

An essential aspect of this balance is the governance of the foundational elements that ensure our privacy on the web. Root programs that underpin the WebPKI play a critical role in maintaining trust and security online. The WebPKI provides the infrastructure for secure Internet communication, ensuring that users can trust the websites they visit and the transactions they perform. Efforts to weaken this system, such as the eIDAS regulation in the EU, pose significant risks. Certificate Transparency (CT) logs, which provide a transparent and publicly auditable record of all certificates issued, are crucial for detecting and preventing fraudulent certificates, thus ensuring the infrastructure remains robust and reliable. Trusted root certificate authorities (CAs) must demonstrate principled, competent, professional, secure, and transparent practices, with continual review to maintain the WebPKI’s integrity. By protecting and strengthening these foundational elements, we ensure that the infrastructure supporting our digital world remains secure and trustworthy. This vigilance is crucial as we continue to innovate and develop new technologies that rely on these systems.

By protecting and strengthening these foundational elements, we ensure that the infrastructure supporting our digital world remains secure and trustworthy. This vigilance is crucial as we continue to innovate and develop new technologies that rely on these systems.

Here are several guiding principles to consider:

  1. Transparency: Companies developing these technologies must be transparent about their data practices and the potential risks involved. Clear communication about how data is collected, stored, and used can help build trust.
  2. Accountability: Ensuring accountability involves creating systems and processes that allow for oversight and verification of how data is handled. This can include audits, reports, and other mechanisms that demonstrate a company’s commitment to ethical data management.
  3. Privacy by Design: Incorporating privacy features from the ground up is essential. Technologies should embed privacy controls, transparency encryption, as Private Cloud Compute does,  as fundamental components, not as afterthoughts.
  4. Legal and Ethical Standards: There must be robust legal frameworks and ethical standards governing the use of surveillance technologies. These frameworks should ensure that surveillance is conducted legally, with proper oversight, and that it respects individuals’ rights and is discoverable when it has been done so it is harder to abuse.
  5. Public Dialogue and Advocacy: Engaging in public dialogue about the implications of these technologies is crucial. Advocacy groups, policymakers, and the tech industry need to work together to educate the public and advocate for policies that protect privacy and civil liberties.
  6. Technological Safeguards: Implementing technological safeguards to prevent misuse is critical. This includes encryption, verifiable designs, and transparent audit-ability so reliance on blind faith isn’t a necessary precondition to ensure that surveillance capabilities are not abused.

The Role of the Tech Community

The tech community plays a pivotal role in shaping the future of these technologies. By fostering a culture of ethical development and responsible innovation, developers, engineers, and tech companies can influence how new tools are designed and deployed. This involves prioritizing user privacy and security at every stage of development and ensuring that these principles are not compromised for convenience or profit.

Historical examples demonstrate the effectiveness of this approach. The Clipper Chip breakage in the 1990s is a notable case where researchers exposed significant security flaws, proving that government-mandated backdoors can undermine overall security. More recently, the advocacy for end-to-end encryption (E2EE) and the supporting technologies showcase the tech community’s positive influence. Companies like WhatsApp, Signal and Apple have implemented E2EE, setting new standards for privacy and security in communications.

Continued innovation in this regard can be seen in developments like key transparency and contact discovery. Key transparency mechanisms allow users to verify that the encryption keys they are using have not been tampered with, minimizing the amount of trust required in service providers and showing leadership for the industry as a whole.

Developers should also advocate for and adopt open standards that enhance verifiability, auditability, security, and privacy. These standards can serve as benchmarks for best practices, helping to establish a baseline of trust and reliability in new technologies. Collaboration within the tech community can lead to the creation of robust, interoperable systems that are harder for malicious actors to exploit.

Additionally, academia plays a crucial role in this endeavor by researching and developing provably secure models for various technologies. Academic work often focuses on creating rigorous, mathematically sound methods for ensuring security and privacy. By integrating these academic findings into practical applications, we can build more secure and trustworthy systems. This partnership between industry and academia fosters innovation and helps establish a foundation for secure technology development.

Moreover, the tech community must actively engage in policy discussions. By providing expert insights and technical perspectives, they can help shape legislation that balances innovation with the protection of civil liberties. This engagement can also help policymakers understand the technical complexities and potential risks associated with surveillance technologies, leading to more informed and balanced decision-making.

And finally, important we help regulators understand that technology alone cannot solve deeply rooted social problems and over-reliance on technology will lead to unintended consequences. A balanced approach that integrates technology with thoughtful policy, ethical considerations, and social engagement is essential if we want to see effective changes.

Education and Awareness

Educating the public about the implications of these technologies is crucial. Many people may not fully understand how their data is collected, used, and potentially monitored. By raising awareness about these issues, we can empower individuals to make informed decisions about their digital privacy.

Educational initiatives can take many forms, from public awareness campaigns to integrating privacy and security topics into school curriculums. At the same time, we must be careful to recognize the concerns and motivations of those advocating for these cases. This is not a situation where preaching to the choir or pontificating about abstract possibilities will be effective. We must anchor this education in recent history and concrete examples to avoid sounding like zealots.

Conclusion

The increasing push for censorship and the risk of enabling government surveillance underscore the delicate balance between technological advancement and civil liberties. Emerging technologies bring both promise and peril, potentially enabling unprecedented surveillance.

To address these risks, we must advocate for transparency, accountability, and privacy by design. Establishing robust legal and ethical standards, engaging in public dialogue, and raising awareness about digital privacy are essential steps. The tech community must prioritize ethical development, adopt open standards, and participate in policy discussions to ensure that innovation does not come at the cost of individual rights.

In conclusion, while new technologies offer significant benefits, they also pose risks that demand careful management. By balancing innovation with vigilance, we can create a future where technology enhances usability without compromising our fundamental freedoms.

Evolving Challenges in Software Security

In 2023, we observed an average month-to-month increase in CVEs of approximately 1.64%, with this rate accelerating as the year progressed. At the same time, several trends emerged that are associated with this increase. These include a heightened focus on supply chain security by governments and commercial entities, intensified regulatory discussions around how to roll out concepts of software liability, and the expanded application of machine learning technologies in software security analysis.

Despite the broad use of open source, the large majority of software is still delivered and consumed in binary form. There are a few reasons for this, but the most obvious is that the sheer size and complication of code bases combined with the limited availability of expertise and time within consuming organizations makes the use of the source to manage risk impractical.

At the same time, it’s clear this issue is not new, for example in 1984, Ken Thompson, in his Turing Award Lecture, mentioned, “No amount of source-level verification or scrutiny will protect you from untrusted code”. This statement has been partially vindicated recently, as intelligent code analysis agents, although faster ways to produce code, have been found to exert downward pressure on code quality while also reducing the developer’s understanding of the code they produce — a bad combination.

To the extent these problems are resolved we can expect the attackers to be using the same tools to more rapidly identify new and more complex attack chains. In essence, it has become an arms race to build and apply these technologies to both offensive and defensive use cases.

It is this reality that has led to DARPA’s creation of the DARPA’s Artificial Intelligence Cyber Challenge and its various projects on using AI to both identify and fix security defects at scale.

The saying “In the middle of difficulty lies opportunity” aptly describes the current situation, where numerous security focused startups claim to offer solutions to our problems. However, the truth is often quite different.

Some of those racing to take advantage of this opportunity are focusing on software supply chain security, particularly with a focus on software composition analysis. This is largely driven by regulatory pressures to adopt the Software Bill of Materials concept. Yet, most tools that generate these documents only examine interpreted code and declared dependencies. As previously mentioned, the majority of code is delivered and consumed in compiled form, leaving customers unable to assess its correctness and completeness without enough data to do so. As a result, although these tools may help with compliance, they inadvertently cause harm by giving a false sense of security.

There are other vendors still that are essentially scaling up traditional source code reviews using large language models (LLMs). But as we’ve discussed, these tools are currently showing signs of reducing code quality and developers’ understanding of their own code. At the same time these tools produce such a high volume of false positives given the lack of context this analysis has available to it triaging the outputs can turn into a full-time job. This suggests that negative outcomes could ensue over time if we don’t adjust how we apply this technology or see significant improvements in the underlying technology itself.

These efforts are all concentrated on the software creators but if we expand the problem domain to include the consumers of software we see that outside of cloud environments, where companies like Wiz and Aqua Security provide vulnerability assessments at scale, there are hardly any resources aiding software consumers in making informed decisions about the risks they face by the software they use. A big part of this is the sheer amount of noise even these products produce, combined with the lack of actionability in such data for the consumer of the software. With that said these are tractable problems if we just choose to invest in new solutions rather than apply the same old approaches we have in the past.

As we look toward the next decade, it is clear that software security is at a pivotal point, and navigating it goes beyond just technology; it requires a change in mindset towards more holistic security strategies that consider both technical and human factors. The next few years will be critical as we see whether the industry can adapt to these challenges.

Challenges in Digital Content Authentication and the Persistent Battle Against Fakes

Efforts have been made for years to detect modified content by enabling content-creation devices, such as cameras, to digitally sign or watermark the content they produce. Significant efforts in this area include the Content Authenticity Initiative and the Coalition for Content Provenance and Authenticity. However, these initiatives face numerous issues, including privacy concerns and fundamental flaws in their operation, as discussed here.

It is important to understand that detecting fakes differs from authenticating originals. This distinction may not be immediately apparent, but it is essential to realize that without 100% adoption of content authentication technology—an unachievable goal—the absence of a signature or a watermark does not mean that it is fake. To give that some color just consider that photographers to this day love antique Leica cameras and despite modern alternatives, these are still often their go-to cameras.

Moreover, even the presence of a legitimate signature on content does not guarantee its authenticity. If the stakes are high enough, it is certainly possible to extract signing key material from an authentic device and use it to sign AI-generated content. For instance, a foreign actor attempting to influence an election may find the investment of time and money to extract the key from a legitimate device worthwhile. The history of DVD CSS demonstrates how easy it is for these keys to be extracted from devices and how even just being able to watch a movie on your favorite device can provide enough motivation for an attacker to extract keys. Once extracted, you cannot unring this bell.

This has not stopped researchers from developing alternative authenticity schemes. For example, Google recently published a new scheme they call SynthID. That said, this approach faces the same fundamental problem: authenticating trustworthy produced generative AI content isn’t the same thing as detecting fakes.

It may also be interesting to note that the problem of detecting authentic digital content isn’t limited to generative AI content. For example, the Costco virtual member card uses a server-generated QR code that rotates periodically to limit the exposure of sharing of that QR code via screenshots.

This does not mean that the approach of signing or watermarking content to make it authenticatable lacks value; rather, it underscores the need to recognize that detecting fakes is not the same as authenticating genuine content — and even then we must temper the faith we put in those claims.

Another use case for digital signatures and watermarking techniques involves their utility in combating the use of generative AI to create realistic-looking fake driver’s licenses and generative AI videos capable of bypassing liveness tests. There have also been instances of generative AI being used in real-time to impersonate executives in video conferences, leading to significant financial losses.

Mobile phones, such as iPhones and Android devices, offer features that help remote servers authenticate the applications they communicate with. While not foolproof, assuming a hardened and unmodified mobile device, these features provide a reasonable level of protection against specific attacks. However, if a device is rooted at the kernel level, or physically altered, these protective measures become ineffective. For instance, attaching an external, virtual camera could allow an attacker to input their AI-generated content without the application detecting the anomaly.

There have also been efforts to extend similar capabilities to browsers, enabling modern web applications to benefit from them. Putting aside the risks of abuse of these capabilities to make a more closed web, the challenge here, at least in these use cases, is that browsers are used on a wider range of devices than just mobile phones, including desktops, which vary greatly in configuration. A single driver update by an attacker could enable AI-generated content sources to be transmitted to the application undetected.

This does not bode well for the future of remote identification on the web, as these problems are largely intractable. In the near term, the best option that exists is to force users from the web to mobile applications where the server captures and authenticates the application, but even this should be limited to lower-value use cases because it too is bypassable by a motivated attacker.

In the longer term, it seems that it will fuel the fire for governments to become de facto authentication service providers, which they have demonstrated to be ineffective at. Beyond that, if these solutions do become common, we can certainly expect their use to be mandated in cases that create long-lasting privacy problems for our children and grandchildren.

UPDATE: A SecurityWeek article came out today on this topic that has some interesting figures on this topic.

UPDATE: Another SecurityWeek article on this came out today.

Effortless Certificate Lifecycle Management for S/MIME

In September 2023, the SMIME Baseline Requirements (BRs) officially became a requirement for Certificate Authorities (CAs) issuing S/MIME certificates (for more details, visit CA/Browser Forum S/MIME BRs).

The definition of these BRs served two main purposes. Firstly, they established a standard profile for CAs to follow when issuing S/MIME certificates. Secondly, they detailed the necessary steps for validating each certificate, ensuring a consistent level of validation was performed by each CA.

One of the new validation methods introduced permits mail server operators to verify a user’s control over their mailbox. Considering that these services have ownership and control over the email addresses, it seems only logical for them to be able to do domain control verification on behalf of their users since they could bypass any individual domain control challenge anyway. This approach resembles the HTTP-01 validation used in ACME (RFC 8555), where the server effectively ‘stands in’ for the user, just as a website does for its domain.

Another new validation method involves delegating the verification of email addresses through domain control, using any approved TLS domain control methods. Though all domain control methods are allowed for in TLS certificates as supported its easiest to think of the DNS-01 method in ACME here. Again the idea here is straightforward: if someone can modify a domain’s TXT record, they can also change MX records or other DNS settings. So, giving them this authority suggests they should reasonably be able to handle certificate issuance.

Note: If you have concerns about these two realities, it’s a good idea to take a few steps. First, ensure that you trust everyone who administers your DNS and make sure it is securely locked down. 

To control the issuance of S/MIME certificates and prevent unauthorized issuance, the Certification Authority Authorization (CAA) record can be used. Originally developed for TLS, its recently been enhanced to include S/MIME (Read more about CAA and S/MIME).

Here’s how you can create a CAA record for S/MIME: Suppose an organization, let’s call it ‘ExampleCo’, decides to permit only a specific CA, ‘ExampleCA’, to issue S/MIME certificates for its domain ‘example.com’. The CAA record in their DNS would look like this:

example.com. IN CAA 0 smimeemail "ExampleCA.com"

This configuration ensures that only ‘ExampleCA.com’ can issue S/MIME certificates for ‘example.com’, significantly bolstering the organization’s digital security.

If you wanted to stop any CA from issuing a S/MIME certificate you would create a record that looks like this: 

example.com. IN CAA 0 issuemail ";"

Another new concept introduced in this round of changes is a new concept called an account identifier in the latest CAA specification. This feature allows a CA to link the authorization to issue certificates to a specific account within their system. For instance:

example.com. IN CAA 0 issue "ca-example.com; account=12345"

This means that ‘ca-example.com’ can issue certificates for ‘example.com’, but only under the account number 12345.

This opens up interesting possibilities, such as delegating certificate management for S/MIME or CDNs to third parties. Imagine a scenario where a browser plugin, is produced and managed by a SaaS on behalf of the organization deploying S/MIME. This plug-in takes care of the initial enrollment, certificate lifecycle management, and S/MIME implementation acting as a sort of S/MIME CDN.

This new capability, merging third-party delegation with specific account control, was not feasible until now. It represents a new way for organizations to outsource the acquisition and management of S/MIME certificates, simplifying processes for both end-users and the organizations themselves.

To the best of my knowledge, no one is using this approach yet, and although there is no requirement yet to enforce CAA for SMIME it is in the works. Regardless the RFC has been standardized for a few months now but despite that, I bet that CAs that were issuing S/MIME certificates before this new CAA RFC was released are not respecting the CAA record yet even though they should be. If you are a security researcher and have spare time that’s probably a worthwhile area to poke around 😉

The Rise of Key Transparency and Its Potential Future in Email Security

Key Transparency has slowly become a crucial part of providing truly secure end-to-end encrypted messaging. Don’t believe me? The two largest providers of messaging services, Apple and Facebook (along with their WhatsApp service), have openly adopted it, and I am hopeful that Google, one of its early advocates, will follow suit.

At the same time, we are on the precipice of interoperable group messaging as Messaging Layer Security (MLS) was recently standardized. Its contributors included representatives from employees of the mentioned services and more, which suggests they may adopt it eventually. What does this have to do with Key Transparency? It acknowledges the need for secure, privacy-preserving key discovery through its inclusion of Key Transparency in its architecture.

It’s also noteworthy to see that Apple has agreed to support RCS, Android’s messaging protocol. While there is no public hint of this yet, it’s possible that since they have positioned themselves as privacy champions over the last decade frequently toting their end-to-end encryption, we may see them push for MLS to be adopted within RCS, which could net the world its first interoperable cross-network messaging with end-to-end encryption, and that would need a key discovery mechanism.

In that spirit, recently the Internet Engineering Task Force (IETF) has established a Working Group on Key Transparency, and based on the participation in that group, it seems likely we will see some standardization around how to do Key Transparency in the future.

What’s Next for Key Transparency Adoption Then?

I suspect the focus now shifts to S/MIME, a standard for public key encryption and signing of emails. Why? Well, over the last several years, the CA/Browser Forum adopted Baseline Requirements (BRs) for S/MIME to help facilitate uniform and interoperable S/MIME, and those became effective on September 1, 2023 – this means CAs that issue these certificates will need to conform to those new standards.

At the same time, both Google and Microsoft have made strides in their implementations of S/MIME for their webmail offerings.

In short, despite my reservations about S/MIME due to its inability to address certain security challenges (such as metadata confidentiality, etc), it looks like it’s witnessing a resurgence, particularly fueled by government contracts. But does it deliver on the promise today? In some narrow use cases like mail signing or closed ecosystem deployments of encrypted mail where all participants are part of the same deployment, it is probably fair to say yes.

With that said, mail is largely about interoperable communications, and for that to work with encrypted S/MIME, we will need to establish a standard way for organizations and end-users to discover the right keys to use with a recipient outside of their organization. This is where Key Transparency would fit in.

Key Transparency and S/MIME

Today, it is technically possible for two users to exchange certificates via S/MIME, enabling them to communicate through encrypted emails. However, the process is quite awkward and non-intuitive. How does it work? You either provide the certificate out of band to those in the mail exchange, and they add it to their contact, or some user agents automatically use the keys associated with S/MIME signatures from your contacts to populate the recipient’s keys.

This approach is not ideal for several reasons beyond usability. For instance, I regularly read emails across three devices, and the private keys used for signing may not be the same on each device. Since consistent signing across devices isn’t required, if I send you an email from my phone and then you send me an encrypted message that I try to open on my desktop, it won’t open.

Similarly, if I roll over my key to a new one because it was compromised or lost, we would need to go through this certificate distribution workflow again. While Key Transparency doesn’t solve all the S/MIME-related problems, it does provide a way to discover keys without the cumbersome process, and at the same time, it allows recipients to know all of my active and published certificates, not just the last one they saw.

One of the common naive solutions to this problem is to have a public directory of keys like what was used for PGP. However, such an approach often becomes a directory for spammers. Beyond that, you have the problem of discovering which directory to use with which certificate. The above Key Transparency implementations are all inspired by the CONIKS work, which has an answer to this through the use of a Verifiable Random Function (VRF). The use of the VRF in CONIKS keeps users’ email addresses (or other identifiers) private. When a user queries the directory for a key, the VRF is used to generate a unique, deterministic output for each input (i.e., the user’s email). This output is known only to the directory and the user, preserving privacy.

The generic identifier-based approach in Key Transparency means it can neatly address the issue of S/MIME certificate discovery. The question then becomes, how does the sender discover the Key Transparency server?

Key Transparency Service Discovery

The answer to that question probably involves DNS resource records (RRs). We use DNS every day to connect domain names with IP addresses. It also helps us find services linked to a domain. For instance, this is how your email server is located. DNS has a general tool, known as an SRV record, which is designed to find other services. This tool would work well for discovering the services we’re discussing.

_sm._keytransparency._https.example.com. 3600 IN SRV 10 5 443 sm-kt.example.com.

In this example, _sm the identifier is placed before _keytransparency. and _https shows that this SRV record is specifically for a Key Transparency service for Secure Messaging. This allows someone to ask DNS for a S/MIME-specific Key Transparency service. It also means we can add other types of identifiers later, allowing for the discovery of various KT services for the same domain.

Conclusion

While S/MIME faces many challenges, such as key roaming, message re-encrypting on key rollover, and cipher suite discoverability, before it becomes easy to use and widely adopted—not to mention whether major mail services will invest enough in this technology to make it work—there’s potential for a directory based on Key Transparency if they do.

Hopefully, the adoption of Key Transparency will happen if this investment in S/MIME continues, as it’s the only large-scale discovery service for user keys we’ve seen in practice. Unlike other alternatives, it’s both privacy-respecting and transparently verifiable, which are important qualities in today’s world. Only time will tell, though.

Document Authenticity in the Age of Generative AI

In our rapidly evolving lives, the credibility of documents, images, and videos online has emerged as a concern. The pandemic and recent elections have helped highlight this issue. In the case of elections, one area that stands out to me is concerns over voter roll integrity, a pillar of our democratic process in the US.  

As we grapple with these issues, it is important to explore what a solution might look like that balances the associated privacy concerns. Is it possible to provide assurance of integrity and transparency while also providing accommodations for privacy and accountability?

Misinformation in the Digital Age

Despite its challenges, the pandemic did have a silver lining — it brought attention to the internet’s role as a breeding ground for misinformation campaigns. These campaigns featured manipulated images and documents, creating confusion and distrust globally. They also underscored a glaring gap in our current systems — no broad deployment of reliable mechanisms to verify the authenticity and origin of digital content.

The recent advancements in generative AI over the last two years have further complicated this issue. Now with a few words, anyone on the web can create images that at first blush look real. This technology will only continue to get better which means we will need to begin to more formally look at how we build solutions to tackle this new reality.

Existing Solutions and Their Shortcomings

Several technologies have recently been discussed as the way forward to address at least portions of these problems. One such example is the Content Authenticity Initiative which proposes that devices like cameras cryptographically sign all pictures and videos with a device credential, a feature aimed at enabling the detection of any alterations made post-capture. 

This method raises significant privacy concerns. Essentially, it could create a surveillance infrastructure where each content piece could be unexpectedly traced back to an individual or a group of devices, potentially becoming a surveillance tool.

Google DeepMind also recently brought forth the idea of opt-in watermarking for images created through AI technologies. While this initiative seems promising at a glance, it fails to address the nuances of the threat model. For instance, a nation-state with intentions to manipulate an election using generative AI assets wouldn’t likely volunteer to watermark these materials as AI-generated. This significant loophole sets a precarious stage where misinformation can still flourish.

These approaches, though developed with noble intentions, reveal critical gaps in addressing the complex landscape of content authenticity. They either infringe upon individual privacy rights or are vulnerable to exploitation when faced with a real threat model. 

Middle Ground: Publisher Signatures and Blinding as a Potential Solution

A more nuanced approach could utilize optional cryptographic signatures linked to a publisher, instead of devices, when signed, the publisher, not their devices, opts into staking their reputation on the authenticity of the artifact. Coupled with a feature to enable cryptographically blinding the publisher’s identity, this strategy could offer a safe avenue for them to reveal their identity at a later time, if necessary. Such a situation might arise in cases of whistleblower claims, where shielding the publisher’s identity becomes crucial for their safety. This blinding could strike a balance, granting publishers temporary anonymity while preserving the potential to enable them to later opt-in to publicly stand behind the artifact or to take accountability for any misinformation.

In contrast to devices subtly leaking metadata that would put subjects in the position to have to prove a negative, for example, needing to explain a picture does not tell the whole story. Or even worse putting the subject of a picture in a situation where they need to prove that the device that captured it was compromised, This is similar to what happens today with red-light cameras and automated radar guns where poorly calibrated devices result in innocent people being charged.

The proposed model shifts the identification to publishers in the hope of fostering a responsible publishing culture where publishers have the discretion to unveil their identity, promoting accountability without completely compromising privacy.

It is also worth noting that a transition from ink signatures to cryptographic signatures for documents appears more pertinent than ever. Generative AI and graphic design technologies have enhanced the ability to replicate handwriting styles, making traditional signatures highly susceptible to forgery. The use of cryptographic techniques offers a more secure alternative, integrating seamlessly into modern workflows and standing resilient against unauthorized alterations.

Publisher Signatures Are Not Enough

In information security, it’s now accepted that insider threats are a significant risk. This realization has steered us away from merely verifying the identity of a publisher, especially in cryptographic signing systems such as code signing. 

There are a few reasons, but one of the largest is that key management proves to be challenging, often due to the fact that publishers frequently represent groups rather than individuals, leading to key management practices being more permissive than ideal from a security standpoint. 

Additionally, if a solution is to incorporate the possibility of anonymity through cryptographic blinding we can not simply bet on the presence and blind trust in that identity.

This is the same reason that led modern code-signing solutions to adopt ledgers that record an artifact’s provenance and history. For instance, in a Binary Transparency system, a ledger might house not only a list of software packages and their contents but also offer qualitative attestations about the software, for example indicating whether it has been screened for malware or verified to be reproducible from its source. This mechanism allows devices to understand not just the origin of the code but also to grasp the intended release of the software and potentially qualitative aspects to consider before reliance on it.

Applying this pattern to our document provenance and integrity problem, this system can offer value even when the identity remains undisclosed. It can provide a basic idea of the time of existence and allow third parties to vouch for the authenticity, possibly linking to other corroborative artifacts.

Building a continuously verifiable record coupled with supportive evidence for artifacts like documents seems to be a step in the right direction. This approach has demonstrated its value in other problem spaces.

With that said it’s essential to acknowledge that, as with any opt-in system, documents, images, and videos will not all contain this additional provenance and like with all technology this too would not be perfect. As a result, this means that rather than outright dismissal, all content will need to be evaluated based on merit, and the evidence collected about it. At a minimum, we must recognize that it can take years for any new system to gain substantial traction.

Learning from the rest of the world.

This issue is not confined to the US, so we should not restrict ourselves to looking at approaches used by US Big Tech. For instance, the strategies suggested here significantly draw upon the principles of electronic signatures, particularly e-Seals, which are prevalent in the EU and other regions. This European model offers vital insights and presents a robust strategy for resolving disputes, albeit reliant on specific technologies.

Interestingly, US online notarization rules have also borrowed elements from the EU, mandating the use of cryptographic signatures, akin to the EU’s emphasis on Advanced Signatures.

By combining this approach with the lessons learned from Certificate and Binary Transparency, where Merkle trees of published materials, continuous monitoring, and third-party evaluation help ensure a more complete picture — we might find a path forward. 

The addition of blinding the publisher’s identity in a way where they could selectively disclose their identity in the future also seems to provide a plausible way to balance the privacy concerns that could enable this path to become the default in the future.

Motivating Participation through Innovation, Policy and Leadership

Adoption of this approach cannot solely rely on goodwill or regulation. It would require a combination of standardization, regulatory changes, creating incentives for publishers, engagement with civil society and other stakeholders, and some tangible leadership by example by a large player or two. Some ideas in this direction include:

  • Initiating revisions to the existing digital signature legislation seems to be a sensible first step. Given our substantial background with the current laws, it’s clear that without regulatory changes, technological investments are unlikely to shift.
  • The government can lead by example by enhancing initiatives like the current Digital Autopen project. This project allows groups of individuals to access shared signing credentials without tying them to individual users, addressing a notable challenge prevalent in code signing and other organizational signing efforts.
  • I also believe that investing in a singular, immensely impactful use case as a case study could vividly illustrate how these approaches can make a significant difference. The voter registration rolls mentioned earlier seem like an excellent use case for this.
  • Further research and standardization could explore integrating cryptographic blinding of signer identities within the current document signing infrastructure, allowing for future disclosure. Investigating the potential structure and security of ledgers, and considering the extension of signing protocols to other artifact formats, seems to be a natural progression in supporting a system of this kind.
  • Simultaneously, collaboration with civil society, tech companies, and other stakeholders, including publishers, appears vital. This will guarantee that their concerns are integrated into the developed solutions and that appropriate policies are instituted to effectively incorporate this metadata into their operations.
  • I also believe investing in a singular and hugely impactful use case as a case study of how these approaches can make a big difference. The voter registration rolls discussed earlier seem like a great use case for this.

While these efforts would not necessarily lead to adoption it does seem that adoption would minimally be a predicate on efforts like these.

A Pathway to Trust and Accountability

Balancing privacy and accountability in the digital age is a nuanced but achievable goal, especially if we build on top of existing successes. By adopting a well-rounded approach that integrates cryptographic signatures with mechanisms for temporary anonymity, we can carve a pathway toward a society where digital content maintains its integrity and trustworthiness. 

Moreover, by fostering an environment where content, even without clear provenance, is evaluated critically rather than dismissed, we encourage a richer discourse and a healthier digital ecosystem.

Through the union of technology and policy, we can create a more secure, transparent, and accountable future for content authenticity.

How to keep bad actors out in open ecosystems

There is a class of problems in information security that are intractable. This is often because they have conflicting non-negotiable requirements. 

A good example of this is what I like to call the “re-entry” problem. For instance, let’s say you operated a source control service, let’s call it “SourceHub”. To increase adoption you need “SourceHub” to be quick and easy for anyone to join and get up and running. 

But some users are malicious and will do nefarious things with “SourceHub” which means that you may need to kick them off and keep them off of your service in a durable way.

These two requirements are in direct conflict, the first essentially requires anonymous self-service registration and the second requires strong, unique identification.

The requirement of strong unique identification might seem straightforward on the surface but that is far from the case. For example, in my small social circle, there are four “Natallia’s” who are often are at the same gatherings, everyone must qualify which one we are talking to at these events. I also used to own ryanhurst.com but gave it up because of the volume of spam I would get from fans of Ryan Hurst the actor because spam filters would fail to categorize this unique mail as spam due to the nature of its origin.

Some might say this problem gets easier when dealing with businesses but unfortunately, that is not the case. Take for example the concept of legal identity in HTTPS certificates — we know that business names are not globally unique, they are not even unique within a country which often makes the use of these business names as an identifier useless. 

We also know that the financial burden to establish a “legal business” is very low. For example in Kentucky, it costs $40 to open a business. The other argument I often hear is that despite the low cost of establishing the business the time involved is just too much for an attacker to consider.  The problem with this argument is the registration form takes minutes to fill out and if you toss in an extra $40 the turnaround time goes from under 3 weeks to under 2 days — not exactly a big delay when looking at financially incentified attackers.

To put this barrier in the context of a real-world problem let’s look at Authenticode signing certificates. A basic organizationally validated Authenticode code signing certificate costs around $59, With this certificate and that business registration, you can get whatever business name and application name you want to show in the install prompt in Windows.

This sets the bar to re-enter this ecosystem once evicted to around $140 dollars and a few days of waiting.

But what about Authenticode EV code signing? By using an EV code signing certificate you get to start with some Microsoft Smart Screen reputation from the get-go – this certainly helps grease the skids for getting your application installed so users don’t need to see a warning.


But does this reduce the re-entry problem further? Well, the cost for an EV code signing certificate is around $219 which does take the financial burden for the attacker to about $300. That is true at least for the first time – about $50 of that first tome price goes to a smart card like the SafeNet 5110cc or Yubikey 5.  Since the same smart card can be used for multiple certificates that cost goes down to $250 per re-entry. It is fair to say the complication of using a smart card for key management also slows the time it takes to get the first certificate, this gets the timeline from incorporation to having an EV code signing certificate in hand to about 1.5 weeks.

These things do represent a re-entry hurdle, but when you consider that effective Zero Day vulnerabilities can net millions of dollars I would argue not a meaningful one. Especially when you consider the attacker is not going to use their own money anyway.

You can also argue that it offers some rate-limiting value to the acquisition pipeline but since there are so many CAs capable of issuing these certificates you could register many companies, somewhat like Special Purpose Acquisition Companies (SPAC) in the stock market, so that when the right opportunity exists to use these certificates it’s ready and waiting.

This hurdle also comes at the expense of adoption of code signing. This of course begs the question of was all that hassle was worth it?

Usually the argument made here is that since the company registration took place we can at least find the attacker at a later date right? Actually no, very few (if any) of these company registrations verify the address of the applicant.

As I stated, in the beginning, this problem isn’t specific to code signing but in systems like code signing where the use of the credential has been separated from the associated usage of the credential, it becomes much harder to manage this risk.

To keep this code signing example going let’s look at the Apple Store. They do code-signing and use certificates that are quite similar to EV code-signing certificates. What is different is that Apple handles the entire flow of entity verification, binary analysis, manual review of the submission, key management, and signing. They do all of these things while taking into consideration the relationship of each entity and by considering the entire history available to them.  This approach gives them a lot more information than you would have if you did each of these things in isolation from each other. 

While there are no silver bullets when it comes to problems like this getting the abstractions at the right level does give you a lot more to work with when trying to defend from these attacks.

Evolution of privacy governance and how cryptographic controls can help

Unfortunately, most organizations do not have a formal strategy for privacy, and those that do usually design and manage them similarly to their existing compliance programs.

This is not ideal for several reasons which I will try to explore in this post but more importantly, I want to explore how the adoption of End-To-End encryption and Client-Side encryption is changing this compliance-focused model of privacy to one backed by proper technical controls based on modern cryptographic patterns. 

If we look at compliance programs they usually evolve from something ad-hock and largely aspirational (usually greatly overselling what they deliver) and over time move to a more structured process-oriented approach that is backed with some minimum level of technical controls to ensure each process is followed. 

What is usually missing in this compliance journey is an assessment of sufficiency beyond “I completed the audit gauntlet without a finding”. This is because compliance is largely focused on one objective — proving conformance to third-party expectations rather than achieving a set of contextually relevant security or privacy objectives – This is the root of why you hear security professionals say “Compliance is not Security”.

If you watch tech news as I do, you have surely seen news articles calling the cybersecurity market “the new lemon market “, and while I do agree this is largely true I also believe there is a larger underlying issue — an overreliance on compliance programs to achieve security and privacy objectives.

To be clear, the point here is not that compliance programs for privacy are not necessary, instead, what I am saying is they need to be structured differently than general-purpose compliance programs, as the objectives are different. These differences lend themself to misuse resistant design and the use of cryptographic controls as an excellent way to achieve those objectives.

Misuse resistance is a concept from cryptography where we design algorithms to make implementation failures harder. This is in recognition of the fact that almost all cryptographic attacks are caused by implementation flaws and not fundamental breaks in the cryptographic algorithms themselves. 

Similarly, in the case of privacy, most companies will not say “we intend to share your data with anyone who asks”. Instead, they talk of their intent to keep your information confidential — the problem is that in the long run everyone experiences some sort of failure and those failures can make it impossible to live up to that intent.

So back to this compliance-focused approach to privacy — it is problematic in several cases, including:

  • Where insiders [1,2,3] are abusing their position within an organization,
  • When configuration mistakes result in leakage of sensitive data [4,5,6], 
  • When service providers fail to live up to customers’ expectations on data handling [7,8], 
  • When technical controls around data segmentation fail [9],
  • and of course when service providers fail to live up to their marketing promises for government access requests for your sensitive information [10,11].

If we move to a model where we approach these problems using engineering principles rather than process and manual controls we end can end up in a world where the data and access to it are inherently misused resistant and hopefully verifiable.

This is exactly what we see in the design patterns that have been adopted by Signal, namely they gather only the minimal level of data to deliver the service, and the data they do gather they encrypt in such a way to limit what they can do with it.

They are not the only ones though can see the similar approaches from Android and how they handle encrypted backups as well as in Apple in how they handle device pin recovery

Another great example is how payment providers like Stripe leverage client-side encryption to reduce exposure of payment details to intermediaries or how Square uses client-side encryption in the Cash App to limit adversaries’ access to the data.

While today these patterns are only being applied by the largest and most technically advanced organizations the reality is that as Alexander Pope once said “to err is human” and if we are to truly solve for privacy and security we have to move to models that rely less on humans doing the right thing and for privacy, this means extensive use of cryptographic patterns like those outlined above.

It could be argued that of the reasons we do not see these patterns applied more is security the nihilist’s argument that client-side encryption and cryptographic transparency are exercises of re-arranging deck chairs on a sinking ship.

While there is some truth to that argument you can both limit the amount of trust you have to place in these providers (limiting the amount of trust delegated is the essence of security after all!) and make elements of what the provider does verifiable which again furthers this misuse resistant objective.

If that is the case then why is it that only the largest providers do this today? I would argue it’s just too darn hard right now. For example, when you start applying client-side encryption and cryptographic controls to systems there is still a substantial lift, especially when compared to the blind trust paradigm most systems operate within.

There are a few reasons, but one of the largest in the case of client-side encryption is that you end up having to build the associated key management frameworks yourself and that takes time, and expertise that many projects simply do not have access to.

With that said just like modern systems have moved from self-hosted monoliths to microservices that are globally scaled thanks to solutions like Kubernetes which in turn gives them node to node compartmentalization and other by default security controls, I believe we will see a similar move for sensitive data handling where these cryptographic controls and usage policies become a key tool in the developer’s toolbox.

More work is needed to make it so the smaller organizations can adopt these patterns but, unquestionably, this is where we end up long term. When we do get here, to borrow an over-used marketing term, we end up what might be called Zero Trust Data Protection in today’s market.

The next decade of Public Key Infrastructure…

Background

Before we talk about the future we need to make sure we have a decent understanding of the past. X.509 based Public Key Infrastructure originally was created in the late 80s with a focus on enterprise and government use cases.  These use cases were largely for private systems, it was not until a decade later this technology was applied to the internet at large.

Since the standards for enrollment and lifecycle management at the time were building blocks rather than solutions and were designed for government and enterprise use cases rather than the internet, the Web PKI, as it became known, relied largely on manual certificate lifecycle management and a mix of proprietary automation solutions.

While the use of PKI in the enterprise continued, primarily thanks to Microsoft AD/CS and its automatic certificate lifecycle management (I worked on this project), the Web PKI grew in a far more visible way. This was primarily a result of the fact that these certificates had to be acquired manually which led to the creation of an industry focused on sales and marketing of individual certificates.

The actors in this system had no incentive to push automation as it would accelerate the commoditization of their products. The reality was that these organizations had also lost much of their technical chops as they became sales and marketing organizations and could no longer deliver the technology needed to bring this automation anyways.

This changed in 2016 when the Internet Security Research Group, an organization I am involved in, launched Let’s Encrypt. This was an organization of technologists looking to accelerate the adoption of TLS on the web and as such started with a focus on automation as it was clear that without automation growth of HTTPS adoption would continue to be anemic. What many don’t know is in when Let’s Encrypt launched HTTPS adoption was at about 40% and year over year growth was hovering around 2-3%, about the rate of growth of the internet and — it was not accelerating. 

Beyond that TLS related outages were becoming more frequent in the press, even for large organizations. Post mortems would continuously identify the same root causes, a manual process did not get executed or was executed incorrectly.

The launch of Let’s Encrypt gave the Internet the first CA with a standards-based certificate enrollment protocol (ACME), this combined with the short-lived nature of the certificates they issued meant those that adopted it would have to use automation for their services to reliably offer TLS. This enabled products to make TLS work reliably and by default, a great example of this is the Caddy web server. This quickly took the TLS adoption rate to around 10% year over year and now we are hovering around 90%+ HTTPS on the internet.

While this was going on the concept of microservices merged with containers which led to container-orchestration, which later adopted the concept of mesh networking. This mesh networking was often based on mutual-TLS (mTLS). The most visible manifestation of that being SPIFFE, the solution used by Kubernetes.

At the same time, we saw networks becoming more composable, pushing authentication and authorization decisions out to the edge of the network. While this pattern has had several names over the years we now call it Zero Trust and a visible example of that today is Beyond Corp from Google. These solutions again are commonly implemented ontop of mutual TLS (mTLS).

We now also see the concept of Secure Access Service Edge (SASE) or Zero-Trust Edge gaining speed which extends this same pattern to lower-level network definition. Again commonly implemented ontop of mTLS.

The reality is that the Web PKI CAs were so focused on sales and marketing they missed almost all of these trends. You can see them now paying lip service to this by talking about DevOps in their sales and marketing but the reality is that the solutions they offer in this area are both too late and too little. This is why cloud technology providers like Hashicorp and cloud providers like Amazon and Google (I am involved in this also) had to step in and provide their offerings.

We now see that Web PKI CAs are starting to more seriously embrace automation for the public PKI use cases, for example, most of the major CAs now offer ACME support to some degree and generally have begun to more seriously invest in the certificate lifecycle management for other use cases.

That being said many of these CAs are making the same mistakes they have made in the past. Instead of working together and ensuring standards and software exist to make lifecycle management work seamlessly across vendors, most are investing in proprietary solutions that only solve portions of the problems at hand.

What’s next?

The usage of certificates and TLS has expanded massively in the last decade and there is no clear alternative to replace its use so I do not expect the adoption of TLS to wain anytime soon.

What I do think is going to happen is a unification of certificate lifecycle management for private PKI use cases and public PKI use cases. Mesh networking, Zero-Trust, and Zero-Trust edge is going to drive this unification.

This will manifest into the use of ACME for these private PKI use cases, in-fact this has already started, just take a look at Cert Manager and Small Step Certificates as small examples of this trend. 

This combined with the ease of deploying and managing private CAs via the new generation of Cloud CA offerings will result in more private PKIs being deployed and the availability problems from issues like certificate expiration and scalability will no longer be an issue.

We will also see extensions to the ACME protocol that make it easier to leverage existing trust relationships which will simplify the issuance process for private use cases as well as ways to leverage hardware-backed device identity and key protection to make the use of these certificate-based credentials even more secure.

As is always the case the unification of common protocols will enable interoperability across solutions, improve reliability and as a result accelerate the adoption of these patterns across many products and problems.

It will also mean that over time the legacy certificate enrollment protocols such as SCEP, WSTEP/XCEP, CMC, EST, and others will become less common.

Once this transition happens this will lead us to a world where we can apply policy based on subjects, resources, claims, and context across L3 to L7 which will transform the way we think about access control and security segmentation. It will give both more control and visibility into who has access to what.

What does this mean for the Web PKI?

First I should say that Web PKI is not going anywhere – with that said it is evolving.

Beyond the increase in automation and shorter certificate validities over the next decade we will see several changes, one of the more visible will be the move to using dedicated PKI hierarchies for different use cases. For example, we will ultimately see server authentication, client authentication, and document signing move to their own hierarchies. This move will better reflect the intent of the Web PKI and prevent these use cases from holding the Web PKI’s evolution back.

This change will also minimize the browser influence on those other scenarios. It will do this at the expense of greater ecosystem complexity around root distribution but the net positive will be felt regardless. I do think this shift will give the European CAs an advantage in that they can rely on the EUTL for distribution and many non-web user agents simply do not want to manage a root program of their own so the EUTL has the potential to be adopted more. I will add that is my hope these user agents instead adopt solution-specific root programs vs relying on a generic one not built for purpose.

The Web PKI CAs that have not re-built their engineering chops are going to fall further behind the innovation curve. Their shift from engineering companies to sales and marketing companies resulted in them missing the move to the cloud and those companies that are going through digital transformation via the adoption of SaaS, PaaS, and modern cloud infrastructures are unlikely to start that journey by engaging with a traditional Web PKI CA.

To address this reality the Web PKI CAs will need to re-invent themselves into product companies focusing on solving business problems rather than selling certificates that can be used to solve business problems. This will mean, for example, directly offering identity verification services (not selling certificates that contain assertions of identity), providing complete solutions for document signing rather than certificates one can use to sign a document or turnkey solutions for certificate and key lifecycle management for enterprise wireless and other related use cases.

This will all lead to workloads that were once on the Web PKI by happenstance being moved to dedicated workload/ecosystem-specific private PKIs. The upside of this is that the certificates used by these infrastructures will have the opportunity to aggressively profile X.509 vs being forced to carry the two decades of cruft surrounding it like they are today.

The Web PKI CAs will have an opportunity to outsource the root certificate and key management for these use cases and possibly subcontract out CA management for the issuing CAs but many of these “issuing CA” use cases are likely to go to the cloud providers since that is where the workloads will be anyway.

Due to the ongoing balkanization of the internet that is happening through increased regional regulation, we will see smaller CAs get acquired, mainly for their market presence to let the larger providers play more effectively in those markets.

At the same time, new PKI ecosystems like those used for STIR/SHAKEN and various PKIs to support IoT deployments will pop up and as the patterns used by them are found to be inexpensive, effective, and easily deployable they will become more common.

We will also see that the lifecycle management for both public and private PKI will unify ontop of the ACME enrollment protocol and that through that a new generation of device management platforms will be built around a certificate-based device identity anchored in keys bound to hardware where the corresponding certificates contain metadata about the device it is bound to.

This will lay the groundwork for improved network authentication within the enterprise using protocols like EAP-TTLS and EAP-TLS, enable Zero-Trust and Zero-Trust Edge deployments to be more easily deployed which will, in turn, blur the lines further between what is on-premise and what is in the cloud.

This normalization of the device identity concepts we use across solutions and the use of common protocols for credential lifecycle will result in better key hygiene for all use cases, and simplify deployment for those use cases.