Beyond the Facade: Evaluating Long-Term Impacts of Enterprise Software Architectures

Many enterprise products these days have a core architecture that consists of placing a proxy in front of an existing service. While the facade architecture makes sense in some cases, it’s usually a temporary measure because it increases the costs of administration, scaling, security, and debugging. It also adds complexity to general management.

The use cases for these offerings often involve one team in an organization providing incremental value to a service operated by another team. This introduces various organizational politics, which make anything more than a proof of concept not really viable, at least on an ongoing basis.

Essentially, anyone who has ever carried a pager or tried to deploy even the most basic system in a large enterprise should avoid this pattern except as a stopgap solution for a critical business system. It is far better, in the medium and long term, to look at replacing the fronted system with something that provides the needed integration or capability natively.

For example, some solutions aim to enable existing systems to use quantum-secure algorithms. In practice, these solutions often look like a single TLS server sitting in front of another TLS server, or a TLS-based VPN where a TLS client (for example, integrating via SOCKS) interfaces with your existing TLS client, which then communicates with that TLS server sitting in front of another TLS server. You can, of course, implement this, and there are places where it makes sense. However, on a long-term basis, you would be better off if there were native support for quantum-secure algorithms or switching out the legacy system altogether.

Similarly, it’s very common now for these enterprise-focused solutions to split the architecture between on-premise/private cloud and a SaaS component. This approach has several benefits: the on-premise part enables integration, core policy enforcement, and transaction handling, and, if done right, ensures availability. The SaaS component serves as the control plane. This combination gives you the best benefits of both on-premise and SaaS offerings and can be implemented while minimizing the security impact of the service provider.

Another pattern that might be confused with this model is one where transactional policy enforcement or transaction handling happens in the SaaS part of the solution, while the integration element remains on-premise. This is probably the easiest to deploy, so it goes smoothly in a proof of concept. However, it makes the SaaS component mission-critical, a performance bottleneck, and a single point of failure, while also pulling it entirely into the threat model of the component. There are cases where this model can work, but for any system that needs to scale and be highly reliable, it’s often not the best choice.

These architectural decisions in third-party solutions have other large impacts that need to be considered, such as data residency and compliance. These are especially important topics outside the US but are also issues within the US if you handle sensitive data and work in regulated markets. Beyond that, architecture and design choices of third-party products can have vendor lock-in consequences. For example, if the solution is not based on open standards, you may find yourself in an inescapable situation down the road without a forklift upgrade, which is often not viable organizationally if the solution fails to deliver.

So why does all of this matter? When we evaluate the purchase of enterprise security software, we need to be sure to look beyond the surface, beyond the ingredient list, and understand how the system is built and how those design decisions will impact our security, availability, performance, maintainability and total cost of ownership both in the near term and long term. Enterprise architects and decision-makers should carefully consider these factors when evaluating different architectural patterns.

Leave a Reply

Your email address will not be published. Required fields are marked *