The Account Recovery Problem and How Government Standards Might Actually Fix It

Account recovery is where authentication systems go to die. We build sophisticated authentication using FIDO2, WebAuthn, and passkeys, then use “click this email link to reset” when something goes wrong. Or if we are an enterprise, we spend millions staffing help desks to verify identity through caller ID and security questions that barely worked in 2005.

This contradiction runs deep in digital identity. Organizations that require hardware tokens and biometrics for login will happily reset accounts based on a hope and a prayer. These companies that spend fortunes on authentication will rely on “mother’s maiden name” or a text message of a “magic number” for recovery. Increasingly we’ve got bank-vault front doors with screen-door back entrances.

The Government Solution

But there’s an interesting solution emerging from an unexpected place: government identity standards. Not because governments are suddenly great at technology, but because they’ve been quietly solving something harder than technology – how to agree on how to verify identity across borders and jurisdictions.

The European Union is pushing ahead with cross-border digital identity wallets based on their own standards. At the same time, a growing number of U.S. states—early adopters like California, Arizona, Colorado, and Utah—are piloting and implementing mobile driver’s licenses (mDLs). These mDLs aren’t just apps showing a photo ID; they’re essentially virtual smart cards, containing a “certificate” of sorts that is used to attest to certain information about you, similar to what happens with electronic reading of passports and federal CAC cards. Each of these mDL “certificates” are cryptographically traceable back to the issuing authority’s root of trust, creating verifiable chains of who is attesting to these attributes.

One of the companies helping make this happen is SpruceID, a company I advise. They have been doing the heavy lifting to enable governments and commercial agencies to accomplish these scenarios, paving the way for a more robust and secure digital identity ecosystem.

Modern Threats and Solutions

What makes this particularly relevant in 2024 is how it addresses emerging threats. Traditional remote identity verification relies heavily on liveness detection – systems looking at blink patterns, reflections and asking users to turn their heads, or show some other directed motion. But with generative AI advancing rapidly, these methods are becoming increasingly unreliable. Bad actors can now use AI to generate convincing video responses that fool traditional liveness checks. We’re seeing sophisticated attacks that can mimic these patterns the existing systems look at, even the more nuanced subtle facial expressions that once served as reliable markers of human presence.

mDL verification takes a fundamentally different approach. Instead of just checking if a face moves correctly, it verifies cryptographic proofs that link back to government identity infrastructure. Even if an attacker can generate a perfect deepfake video, they can’t forge the cryptographic attestations that come with a legitimate mDL. It’s the difference between checking if someone looks real and verifying they possess cryptographic proof of their identity.

Applications and Implementation

This matters for authentication because it gives us something we’ve never had: a way to reliably verify legal identity during account authentication or recovery that’s backed by the same processes used for official documents. This means that in the future when someone needs to recover account access, they can prove their identity using government-issued credentials that can be cryptographically verified, even in a world where deepfakes are becoming indistinguishable from reality.

The financial sector is already moving on this. Banks are starting to look at how they can integrate mDL verification into their KYC and AML compliance processes. Instead of manual document checks or easily-spoofed video verification, they will be able to use these to verify customer identity against government infrastructure. The same approaches that let customs agents verify passports electronically will now also be used to enable banks to verify customers.

For high-value transactions, this creates new possibilities. When someone signs a major contract, their mDL can be used to create a derived credential based on the attestations from the mDL about their name, age, and other artifacts. This derived credential could be an X.509 certificate binding their legal identity to the signature. This creates a provable link between the signer’s government-verified identity and the document – something that’s been remarkably hard to achieve digitally.

Technical Framework

The exciting thing isn’t the digital ID – they have been around a while – it’s the support for an online presentment protocol. ISO/IEC TS 18013-7 doesn’t just specify how to make digital IDs; it defines how these credentials can be reliably presented and verified online. This is crucial because remote verification has always been the Achilles’ heel of identity systems. How do you know someone isn’t just showing you a video or a photo of a fake ID? The standard addresses these challenges through a combination of cryptographic proofs and real-time challenge-response protocols that are resistant to replay attacks and deep fakes.

Government benefits show another critical use case. Benefits systems face a dual challenge: preventing fraud while ensuring legitimate access. mDL verification lets agencies validate both identity and residency through cryptographically signed government credentials. The same approach that proves your identity for a passport electronically at the TSA can prove your eligibility for benefits online. But unlike physical ID checks or basic document uploads, these verifications are resistant to the kind of sophisticated fraud we’re seeing with AI-generated documents and deepfake videos.

What’s more, major browsers are beginning to implement these standards as a first-class citizen. This means that verification of these digital equivalents of our physical identities  will be natively supported by the web, ensuring that online interactions—from logging in to account recovery—are more easier and more secure than ever before.

Privacy and Future Applications

These mDLs have interesting privacy properties too. The standards support selective disclosure – proving you’re over 21 without showing your birth date, or verifying residency without exposing your address. You can’t do that with a physical ID card. More importantly, these privacy features work remotely – you can prove specific attributes about yourself online without exposing unnecessary personal information or risking your entire identity being captured and replayed by attackers.

We’re going to see this play out in sensitive scenarios like estate access. Imagine a case when someone needs to access a deceased partner’s accounts, they can prove their identity and when combined with other documents like marriage certificates and death certificates, they will be able to prove their entitlement to access that bank account without the overhead and complexity they need today. Some day we can even imagine those supporting documents to be in these wallets also, making it even easier.

The Path Forward

While the path from here to there is long and there are a lot of hurdles to get over, we are clearly on a path where this does happen. We will have standardized, government-backed identity verification that works across borders and jurisdictions. Not by replacing existing authentication systems, but by providing them with a stronger foundation for identity verification and recovery and remote identity verification – one that works even as AI makes traditional verification methods increasingly unreliable.

We’re moving from a world of island of identity systems to one with standardized and federated identity infrastructure, built on the same trust frameworks that back our most important physical credentials. And ironically, at least in the US it started with making driver’s licenses digital.

Leave a Reply

Your email address will not be published. Required fields are marked *